间作
单作
农学
土壤肥力
土壤水分
环境科学
土壤生态学
生物
土壤科学
土壤生物多样性
作者
Shu Zhang,Lingbo Meng,Jian Hou,Xiaodan Liu,Abiola O. Ogundeji,Zeyu Cheng,Tengjiao Yin,Nicholas Clarke,HU Bao-zhong,Shumin Li
出处
期刊:Plant and Soil
[Springer Nature]
日期:2022-07-28
卷期号:481 (1-2): 63-82
被引量:17
标识
DOI:10.1007/s11104-022-05616-w
摘要
It is demonstrated that intercropping improves soil fertility, but its effect on deep soil is still unclear. The major objective of this study was to determine the distribution of arbuscular mycorrhizal fungi (AMF) and soil aggregates and their interrelationship across soil depths in intercropping systems. A three-year positioning experiment based on a two-factor experimental design at two N application levels (N0 and N2) and different cropping systems (maize/soybean intercropping and corresponding monocultures) was started in 2017. Soil samples were collected from 0–15 cm and 15–30 cm for analyzing soil aggregates and from 0–15 cm, 15–30 cm, 30–5 cm, and 45–60 cm for determining the AMF composition. It was observed that intercropping improved the macro-aggregate (> 5 mm) content at 0–15 cm and 15–30 cm depths for maize soil and only 0–15 cm depth for soybean soil without N treatment. The application of N decreased the macro-aggregate content in the intercropping soil at 0–15 cm and 15–30 cm depths. Moreover, intercropping significantly improved the AMF diversity of maize and soybean soils across soil depths, while the application of N reduced the AMF diversity of soil across depths. The structural equation modeling analysis indicated that the intercropping system influenced the stability of soil aggregates and promoted the formation of large aggregates by altering soil nutrients and the diversity of AMF. The results further revealed the reasons behind soil fertility improvement by adopting crop diversification.
科研通智能强力驱动
Strongly Powered by AbleSci AI