碳酸氢盐
催化作用
电解质
碳纤维
化学
电催化剂
无机碳总量
碳酸盐
电解
无机化学
法拉第效率
吸附
碳化
二氧化碳
化学工程
材料科学
有机化学
电化学
电极
工程类
复合材料
物理化学
复合数
作者
Yi Xie,Pengfei Ou,Xue Wang,Zhanyou Xu,Yuguang Li,Ziyun Wang,Jianan Erick Huang,Joshua Wicks,Christopher McCallum,Ning Wang,Yuhang Wang,Tianxiang Chen,Tsz Woon Benedict Lo,David Sinton,Jimmy C. Yu,Ying Wang,Edward H. Sargent
出处
期刊:Nature Catalysis
[Nature Portfolio]
日期:2022-06-09
卷期号:5 (6): 564-570
被引量:365
标识
DOI:10.1038/s41929-022-00788-1
摘要
Renewable electricity-powered CO2 reduction to multi-carbon (C2+) products offers a promising route to realization of low-carbon-footprint fuels and chemicals. However, a major fraction of input CO2 (>85%) is consumed by the electrolyte through reactions with hydroxide to form carbonate/bicarbonate in both alkaline and neutral reactors. Acidic conditions offer a solution to overcoming this limitation, but also promote the hydrogen evolution reaction. Here we report a design strategy that suppresses hydrogen evolution reaction activity by maximizing the co-adsorption of CO and CO2 on Cu-based catalysts to weaken H* binding. Using density functional theory studies, we found Pd–Cu promising for selective C2+ production over C1, with the lowest ∆GOCCOH* and ∆GOCCOH* - ∆GCHO*. We synthesized Pd–Cu catalysts and report a crossover-free system (liquid product crossover <0.05%) with a Faradaic efficiency of 89 ± 4% for CO2 to C2+ at 500 mA cm−2, simultaneous with single-pass CO2 utilization of 60 ± 2% to C2+.
科研通智能强力驱动
Strongly Powered by AbleSci AI