聚偏氟乙烯
膜
废水
压电
化学
过滤(数学)
化学工程
重新使用
污染物
材料科学
废物管理
复合材料
有机化学
生物化学
统计
工程类
数学
作者
Enya Wu,Yang Yu,Jiayue Hu,Gang Ren,Mingshan Zhu
标识
DOI:10.1016/j.jhazmat.2023.131885
摘要
The conjugation of membrane filtration (MF) with advanced oxidation process (AOPs) is being considered as an alternative advanced treatment process for the potable reuse of wastewater. Beyond conventional MF/AOPs conjugation, a new downstream MF process with piezoelectric-channels induced piezo-activated peroxymonosulfate (PMS) is herein constructed to deal with antiepileptic carbamazepine (CBZ) pollutants through polyvinylidene fluoride (PVDF) membrane (PVDF-M10). Through a MF process, ca. 93.8% CBZ pollutants can be removed under an ultrasonic-assisted piezo-activation PMS, whereas only 18.3% and 60.2% CBZ can be removed by using pure PVDF membrane under the same condition and PVDF-M10 membrane without ultrasonic-assisted piezo-activation. Even after 9-cycles, CBZ removal efficiency was maintained at 56.4% under this MF process. These superior performances are attributed to the piezoelectric exfoliated-MoS2 nanosheets (E-MoS2) embedded PVDF nanofibers in PVDF-M10 membrane, which lead to rich piezoelectric-channels in the membrane. These piezoelectric-channels not only produced more charges to activate PMS to boost the yield of reactive oxide species (ROS) but also provided an ideal platform for the rapid reaction between CBZ and ROS during MF process. This investigation develops a new MF technique to conjugate piezo-activation of PMS-AOPs for the efficient removal of emerging pollutants for the potable reuse of wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI