Bilevel Fast Scene Adaptation for Low-Light Image Enhancement

计算机科学 人工智能 适应性 初始化 CRF公司 超参数 机器学习 适应(眼睛) 计算机视觉 模式识别(心理学) 生态学 生物 光学 物理 条件随机场 程序设计语言
作者
Long Ma,Dian Jin,Nan An,Jinyuan Liu,Xin Fan,Risheng Liu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.01343
摘要

Enhancing images in low-light scenes is a challenging but widely concerned task in the computer vision. The mainstream learning-based methods mainly acquire the enhanced model by learning the data distribution from the specific scenes, causing poor adaptability (even failure) when meeting real-world scenarios that have never been encountered before. The main obstacle lies in the modeling conundrum from distribution discrepancy across different scenes. To remedy this, we first explore relationships between diverse low-light scenes based on statistical analysis, i.e., the network parameters of the encoder trained in different data distributions are close. We introduce the bilevel paradigm to model the above latent correspondence from the perspective of hyperparameter optimization. A bilevel learning framework is constructed to endow the scene-irrelevant generality of the encoder towards diverse scenes (i.e., freezing the encoder in the adaptation and testing phases). Further, we define a reinforced bilevel learning framework to provide a meta-initialization for scene-specific decoder to further ameliorate visual quality. Moreover, to improve the practicability, we establish a Retinex-induced architecture with adaptive denoising and apply our built learning framework to acquire its parameters by using two training losses including supervised and unsupervised forms. Extensive experimental evaluations on multiple datasets verify our adaptability and competitive performance against existing state-of-the-art works. The code and datasets will be available at https://github.com/vis-opt-group/BL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北欧海盗发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
Invariant完成签到,获得积分10
1秒前
1秒前
2秒前
王二哈完成签到,获得积分10
2秒前
2秒前
js关闭了js文献求助
3秒前
DrWang完成签到,获得积分10
3秒前
晓军发布了新的文献求助30
3秒前
sunzeyi完成签到,获得积分10
3秒前
ndndd完成签到,获得积分10
4秒前
4秒前
花生发布了新的文献求助10
5秒前
充电宝应助ttyqty采纳,获得10
5秒前
5秒前
5秒前
冷酷的可乐完成签到,获得积分20
5秒前
wanwu完成签到,获得积分10
5秒前
6秒前
TTL完成签到 ,获得积分10
6秒前
d1111s发布了新的文献求助10
6秒前
爱因斯宣发布了新的文献求助10
7秒前
上官若男应助晓巨人采纳,获得10
7秒前
曼曼完成签到,获得积分20
7秒前
7秒前
WQQ发布了新的文献求助10
8秒前
楚江南完成签到,获得积分10
8秒前
超越俗尘完成签到,获得积分10
8秒前
ariaooo完成签到,获得积分10
8秒前
吕晓飞发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
环游世界完成签到 ,获得积分10
9秒前
dd完成签到,获得积分10
9秒前
张文静发布了新的文献求助10
10秒前
bkagyin应助Giroro_roro采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650