Developing smart air purifier control strategies for better IAQ and energy efficiency using reinforcement learning

空气净化器 室内空气质量 强化学习 能源消耗 空气质量指数 高效能源利用 控制(管理) 计算机科学 汽车工程 环境科学 工程类 环境工程 人工智能 气象学 机械工程 电气工程 物理 入口
作者
Wenzhe Shang,Junjie Liu,Congcong Wang,Jiayu Li,Xilei Dai
出处
期刊:Building and Environment [Elsevier BV]
卷期号:242: 110556-110556 被引量:6
标识
DOI:10.1016/j.buildenv.2023.110556
摘要

PM2.5 has negative impact on human health. Although air purifiers can remove indoor PM2.5 effectively, occupants do not use them well to achieve best performance. It is important to develop automatic control strategy for air purifiers to achieve both indoor air quality and energy efficiency. As traditional air purifier control strategy cannot adapt to the stochastic behavior of residents such as PM2.5 emissions and occupants' window behavior and result in superfluous energy consumption, this study uses the deep reinforcement learning (DeepRL) approach to automatically control the air purifier, which provide better indoor air quality with lower energy consumption. To make the DeepRL applicable in real daily life, we first develop a stochastic model based on measured indoor air quality data, which is able to simulate the indoor PM2.5 process in real time. To improve the energy efficiency of air purifier under this condition, we further trained DeepRL approach to control the air purifier under the simulated PM2.5 process. By virtue of adaption to the stochastic environmental parameters, RL strategy can make the best fit decision in advance to achieve more stable control effect. Comparing to the baseline strategy, both RL-1 and RL-2 show significant improvement in energy efficiency. In specific, RL-1 strategy could reduce 43.7% energy consumption with basically the same indoor PM2.5 concentration level in the best-IAQ scenario, and RL-2 strategy could reduce 40.6% energy consumption and 25.6% frequency of indoor PM2.5 concentration exceed WHO air quality guideline. Thus, it has better comprehensive control performance in the general-IAQ scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助机智毛豆采纳,获得10
刚刚
风趣采白发布了新的文献求助10
2秒前
2秒前
李爱国应助方旋采纳,获得10
3秒前
3秒前
3秒前
小二郎应助简单平松采纳,获得10
4秒前
研友_LMyj0L发布了新的文献求助10
4秒前
金平卢仙发布了新的文献求助10
5秒前
科研GO举报JSzzZ求助涉嫌违规
6秒前
6秒前
英姑应助feifei采纳,获得10
6秒前
6秒前
gh完成签到,获得积分10
7秒前
7秒前
8秒前
zyzy1996完成签到,获得积分10
8秒前
灰色的乌完成签到,获得积分10
9秒前
9秒前
无花果应助aby采纳,获得10
9秒前
neo发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
筱谭完成签到 ,获得积分10
12秒前
六氟合铂酸氙完成签到 ,获得积分10
12秒前
zyzy1996发布了新的文献求助10
12秒前
沉静亦寒完成签到 ,获得积分10
12秒前
12秒前
机智毛豆发布了新的文献求助10
13秒前
13秒前
小二郎应助Saluzi采纳,获得10
13秒前
13秒前
lelelele发布了新的文献求助10
13秒前
14秒前
JUN发布了新的文献求助10
14秒前
vivian完成签到 ,获得积分10
15秒前
缘来是梦发布了新的文献求助10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406