Developing smart air purifier control strategies for better IAQ and energy efficiency using reinforcement learning

空气净化器 室内空气质量 强化学习 能源消耗 空气质量指数 高效能源利用 控制(管理) 计算机科学 汽车工程 环境科学 工程类 环境工程 人工智能 气象学 机械工程 电气工程 物理 入口
作者
Wenzhe Shang,Junjie Liu,Congcong Wang,Jiayu Li,Xilei Dai
出处
期刊:Building and Environment [Elsevier]
卷期号:242: 110556-110556 被引量:6
标识
DOI:10.1016/j.buildenv.2023.110556
摘要

PM2.5 has negative impact on human health. Although air purifiers can remove indoor PM2.5 effectively, occupants do not use them well to achieve best performance. It is important to develop automatic control strategy for air purifiers to achieve both indoor air quality and energy efficiency. As traditional air purifier control strategy cannot adapt to the stochastic behavior of residents such as PM2.5 emissions and occupants' window behavior and result in superfluous energy consumption, this study uses the deep reinforcement learning (DeepRL) approach to automatically control the air purifier, which provide better indoor air quality with lower energy consumption. To make the DeepRL applicable in real daily life, we first develop a stochastic model based on measured indoor air quality data, which is able to simulate the indoor PM2.5 process in real time. To improve the energy efficiency of air purifier under this condition, we further trained DeepRL approach to control the air purifier under the simulated PM2.5 process. By virtue of adaption to the stochastic environmental parameters, RL strategy can make the best fit decision in advance to achieve more stable control effect. Comparing to the baseline strategy, both RL-1 and RL-2 show significant improvement in energy efficiency. In specific, RL-1 strategy could reduce 43.7% energy consumption with basically the same indoor PM2.5 concentration level in the best-IAQ scenario, and RL-2 strategy could reduce 40.6% energy consumption and 25.6% frequency of indoor PM2.5 concentration exceed WHO air quality guideline. Thus, it has better comprehensive control performance in the general-IAQ scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
余笙完成签到 ,获得积分10
1秒前
神勇的雅香应助科研混子采纳,获得10
1秒前
TT发布了新的文献求助10
2秒前
李顺完成签到,获得积分20
3秒前
ayin发布了新的文献求助10
3秒前
wait发布了新的文献求助10
3秒前
我是站长才怪应助xg采纳,获得10
4秒前
童话艺术佳完成签到,获得积分10
4秒前
稀罕你完成签到,获得积分10
4秒前
junzilan发布了新的文献求助10
4秒前
anny.white完成签到,获得积分10
5秒前
科研通AI5应助平常的毛豆采纳,获得10
7秒前
SciGPT应助paul采纳,获得10
10秒前
12秒前
英姑应助书生采纳,获得10
13秒前
科研钓鱼佬完成签到,获得积分10
14秒前
16秒前
petrichor应助C_Cppp采纳,获得10
16秒前
nan完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
勤恳的雨文完成签到,获得积分10
17秒前
木森ab发布了新的文献求助10
18秒前
paul完成签到,获得积分10
18秒前
小鞋完成签到,获得积分10
19秒前
开心青旋发布了新的文献求助10
19秒前
fztnh发布了新的文献求助10
19秒前
无名花生完成签到 ,获得积分10
19秒前
21秒前
22秒前
22秒前
杜若完成签到,获得积分10
22秒前
22秒前
木森ab完成签到,获得积分20
24秒前
paul发布了新的文献求助10
25秒前
26秒前
MEME发布了新的文献求助10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824