已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique

空气质量指数 趋同(经济学) 计算机科学 一般化 算法 残余物 均方误差 希尔伯特-黄变换 人工智能 统计 数学 气象学 经济增长 白噪声 物理 数学分析 经济
作者
Kai Wang,Xinyue Fan,Xiaoyi Yang,Zhongli Zhou
出处
期刊:Environmental Research [Elsevier BV]
卷期号:232: 116365-116365 被引量:9
标识
DOI:10.1016/j.envres.2023.116365
摘要

Air quality index (AQI) is a key index for monitoring air pollution and can be used as guide for ensuring good public health. Accurate AQI prediction allows timely control and management of air pollution. In this study, a new integrated learning model was constructed to predict AQI. A smart reverse learning approach based on AMSSA was utilized to increase the diversity of populations, and an improved AMSSA (IAMSSA) was established. The optimum parameters with penalty factor α and mode number K of VMD were obtained using IAMSSA. The IAMSSA-VMD was used to decompose nonlinear and non-stationary AQI information series into several regular and smooth sub-sequences. The Sparrow Search Algorithm (SSA) was used to determine the optimum LSTM parameters. The results showed that: (1) IAMSSA exhibits faster convergence and higher accuracy and stability using simulation experiments compared with seven conventional optimization algorithms in 12 test functions. (2) IAMSSA-VMD was used to decompose the original air quality data results in multiple uncoupled intrinsic mode function (IMF) components and one residual (RES). An SSA-LSTM model was built for each IMF and one RES component, which effectively extracted the predicted values. (3) LSTM, SSA-LSTM, VMD-LSTM, VMD-SSA-LSTM, AMSSA-VMD-SSA-LSTM, and IAMSSA-VMD-SSA-LSTM models were used for prediction of AQI based on data from three cities (Chengdu, Guangzhou, and Shenyang). IAMSSA-VMD-SSA-LSTM exhibited the optimal prediction performance with MAE, RMSE, MAPE, and R2 of 3.692, 4.909, 6.241, and 0.981, respectively. (4) Generalization outcomes revealed that the IAMSSA-VMD-SSA-LSTM model had optimal generalization ability. In summary, the decomposition ensemble model proposed in this study has higher prediction accuracy, improved fitting effect and generalization ability compared with other models. These properties indicate the superiority of the decomposition ensemble model and provides a theoretical and technical basis for prediction of air pollution and ecosystem restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rzxhygr完成签到,获得积分10
2秒前
2秒前
2秒前
小乔发布了新的文献求助10
5秒前
星叶完成签到 ,获得积分10
5秒前
活泼的断秋完成签到,获得积分10
11秒前
11秒前
和谐曼凝完成签到 ,获得积分10
13秒前
小蘑菇应助活泼的断秋采纳,获得10
15秒前
Yichen Zhang完成签到,获得积分10
16秒前
魁梧的鸿煊完成签到 ,获得积分10
17秒前
星期天发布了新的文献求助100
17秒前
22秒前
香蕉觅云应助xmqaq采纳,获得10
22秒前
zzx完成签到,获得积分20
25秒前
mumu完成签到 ,获得积分10
26秒前
田様应助小乔采纳,获得10
28秒前
小张想发刊完成签到 ,获得积分10
28秒前
研two发布了新的文献求助10
30秒前
甜美宛儿发布了新的文献求助10
31秒前
江彪完成签到,获得积分10
34秒前
最佳完成签到 ,获得积分10
34秒前
冰棒比冰冰完成签到 ,获得积分10
35秒前
红枫没有微雨怜完成签到 ,获得积分10
39秒前
fsznc完成签到 ,获得积分0
45秒前
甜美宛儿完成签到,获得积分10
48秒前
51秒前
迟大猫应助科研通管家采纳,获得10
53秒前
遇上就这样吧应助李剑鸿采纳,获得30
53秒前
高_应助科研通管家采纳,获得10
53秒前
53秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
Grayball应助科研通管家采纳,获得10
54秒前
Grayball应助科研通管家采纳,获得10
54秒前
Grayball应助科研通管家采纳,获得10
54秒前
54秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
Grayball应助科研通管家采纳,获得10
54秒前
所所应助科研通管家采纳,获得10
54秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671119
求助须知:如何正确求助?哪些是违规求助? 3228049
关于积分的说明 9778081
捐赠科研通 2938277
什么是DOI,文献DOI怎么找? 1609808
邀请新用户注册赠送积分活动 760461
科研通“疑难数据库(出版商)”最低求助积分说明 735962