An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique

空气质量指数 趋同(经济学) 计算机科学 一般化 算法 残余物 均方误差 希尔伯特-黄变换 人工智能 统计 数学 气象学 经济增长 白噪声 物理 数学分析 经济
作者
Kai Wang,Xinyue Fan,Xiaoyi Yang,Zhongli Zhou
出处
期刊:Environmental Research [Elsevier]
卷期号:232: 116365-116365 被引量:9
标识
DOI:10.1016/j.envres.2023.116365
摘要

Air quality index (AQI) is a key index for monitoring air pollution and can be used as guide for ensuring good public health. Accurate AQI prediction allows timely control and management of air pollution. In this study, a new integrated learning model was constructed to predict AQI. A smart reverse learning approach based on AMSSA was utilized to increase the diversity of populations, and an improved AMSSA (IAMSSA) was established. The optimum parameters with penalty factor α and mode number K of VMD were obtained using IAMSSA. The IAMSSA-VMD was used to decompose nonlinear and non-stationary AQI information series into several regular and smooth sub-sequences. The Sparrow Search Algorithm (SSA) was used to determine the optimum LSTM parameters. The results showed that: (1) IAMSSA exhibits faster convergence and higher accuracy and stability using simulation experiments compared with seven conventional optimization algorithms in 12 test functions. (2) IAMSSA-VMD was used to decompose the original air quality data results in multiple uncoupled intrinsic mode function (IMF) components and one residual (RES). An SSA-LSTM model was built for each IMF and one RES component, which effectively extracted the predicted values. (3) LSTM, SSA-LSTM, VMD-LSTM, VMD-SSA-LSTM, AMSSA-VMD-SSA-LSTM, and IAMSSA-VMD-SSA-LSTM models were used for prediction of AQI based on data from three cities (Chengdu, Guangzhou, and Shenyang). IAMSSA-VMD-SSA-LSTM exhibited the optimal prediction performance with MAE, RMSE, MAPE, and R2 of 3.692, 4.909, 6.241, and 0.981, respectively. (4) Generalization outcomes revealed that the IAMSSA-VMD-SSA-LSTM model had optimal generalization ability. In summary, the decomposition ensemble model proposed in this study has higher prediction accuracy, improved fitting effect and generalization ability compared with other models. These properties indicate the superiority of the decomposition ensemble model and provides a theoretical and technical basis for prediction of air pollution and ecosystem restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Run完成签到,获得积分10
刚刚
小吴同学完成签到,获得积分10
刚刚
2秒前
3秒前
3秒前
和谐桐完成签到,获得积分10
4秒前
cc完成签到 ,获得积分10
4秒前
Run发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
lili发布了新的文献求助20
6秒前
lingyao完成签到 ,获得积分10
6秒前
斯文败类应助hhhhhhl采纳,获得10
7秒前
华仔应助J卡卡K采纳,获得10
7秒前
星辰大海应助JackRen采纳,获得10
7秒前
7秒前
拾忆发布了新的文献求助10
8秒前
aaaaa完成签到,获得积分10
8秒前
8秒前
CipherSage应助Maggie采纳,获得10
9秒前
9秒前
CipherSage应助安静采纳,获得10
9秒前
badada发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
小猴子发布了新的文献求助10
13秒前
shuochen发布了新的文献求助50
13秒前
在水一方应助xinanfeng采纳,获得10
14秒前
15秒前
15秒前
萨格发布了新的文献求助10
15秒前
Gary完成签到,获得积分10
16秒前
Lc完成签到,获得积分10
16秒前
liky.发布了新的文献求助10
17秒前
17秒前
王灿灿发布了新的文献求助10
17秒前
pan完成签到,获得积分10
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124336
求助须知:如何正确求助?哪些是违规求助? 2774637
关于积分的说明 7723368
捐赠科研通 2430117
什么是DOI,文献DOI怎么找? 1290937
科研通“疑难数据库(出版商)”最低求助积分说明 621972
版权声明 600297