An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique

空气质量指数 趋同(经济学) 计算机科学 一般化 算法 残余物 均方误差 希尔伯特-黄变换 人工智能 统计 数学 气象学 经济增长 白噪声 物理 数学分析 经济
作者
Kai Wang,Xinyue Fan,Xiaoyi Yang,Zhongli Zhou
出处
期刊:Environmental Research [Elsevier BV]
卷期号:232: 116365-116365 被引量:26
标识
DOI:10.1016/j.envres.2023.116365
摘要

Air quality index (AQI) is a key index for monitoring air pollution and can be used as guide for ensuring good public health. Accurate AQI prediction allows timely control and management of air pollution. In this study, a new integrated learning model was constructed to predict AQI. A smart reverse learning approach based on AMSSA was utilized to increase the diversity of populations, and an improved AMSSA (IAMSSA) was established. The optimum parameters with penalty factor α and mode number K of VMD were obtained using IAMSSA. The IAMSSA-VMD was used to decompose nonlinear and non-stationary AQI information series into several regular and smooth sub-sequences. The Sparrow Search Algorithm (SSA) was used to determine the optimum LSTM parameters. The results showed that: (1) IAMSSA exhibits faster convergence and higher accuracy and stability using simulation experiments compared with seven conventional optimization algorithms in 12 test functions. (2) IAMSSA-VMD was used to decompose the original air quality data results in multiple uncoupled intrinsic mode function (IMF) components and one residual (RES). An SSA-LSTM model was built for each IMF and one RES component, which effectively extracted the predicted values. (3) LSTM, SSA-LSTM, VMD-LSTM, VMD-SSA-LSTM, AMSSA-VMD-SSA-LSTM, and IAMSSA-VMD-SSA-LSTM models were used for prediction of AQI based on data from three cities (Chengdu, Guangzhou, and Shenyang). IAMSSA-VMD-SSA-LSTM exhibited the optimal prediction performance with MAE, RMSE, MAPE, and R2 of 3.692, 4.909, 6.241, and 0.981, respectively. (4) Generalization outcomes revealed that the IAMSSA-VMD-SSA-LSTM model had optimal generalization ability. In summary, the decomposition ensemble model proposed in this study has higher prediction accuracy, improved fitting effect and generalization ability compared with other models. These properties indicate the superiority of the decomposition ensemble model and provides a theoretical and technical basis for prediction of air pollution and ecosystem restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助修辛采纳,获得10
1秒前
彩虹马发布了新的文献求助10
1秒前
娜娜完成签到 ,获得积分10
1秒前
孟孟完成签到,获得积分20
1秒前
xixidong完成签到,获得积分10
1秒前
打打应助天乙采纳,获得10
1秒前
新明完成签到,获得积分10
2秒前
TAO完成签到,获得积分10
2秒前
文文完成签到,获得积分10
2秒前
大胖完成签到,获得积分10
2秒前
我一拳打树上完成签到,获得积分10
3秒前
汪爷爷完成签到,获得积分10
3秒前
风中的宛白完成签到,获得积分20
4秒前
要不要减肥完成签到,获得积分10
4秒前
5秒前
逗逗完成签到,获得积分10
6秒前
6秒前
十里桃花不徘徊完成签到,获得积分10
6秒前
7秒前
有一颗卤蛋完成签到,获得积分10
7秒前
虚幻雪枫完成签到,获得积分10
8秒前
快乐的故事完成签到,获得积分10
10秒前
飞飞完成签到,获得积分10
10秒前
陈功完成签到,获得积分10
11秒前
万能图书馆应助fang20130608采纳,获得10
11秒前
Ding应助向雨兰采纳,获得10
12秒前
CHENDQ完成签到,获得积分10
12秒前
zw完成签到,获得积分10
13秒前
桐桐应助zxh采纳,获得10
13秒前
英姑应助开放的可冥采纳,获得10
14秒前
14秒前
跳跃的洋葱完成签到 ,获得积分10
14秒前
小云杉应助坚定的雁菱采纳,获得10
14秒前
ExtroGod完成签到,获得积分10
14秒前
天气好的话完成签到,获得积分10
15秒前
15秒前
七濑完成签到,获得积分10
15秒前
15秒前
hjabao完成签到,获得积分10
15秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259