An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique

空气质量指数 趋同(经济学) 计算机科学 一般化 算法 残余物 均方误差 希尔伯特-黄变换 人工智能 统计 数学 气象学 经济增长 白噪声 物理 数学分析 经济
作者
Kai Wang,Xinyue Fan,Xiaoyi Yang,Zhongli Zhou
出处
期刊:Environmental Research [Elsevier BV]
卷期号:232: 116365-116365 被引量:26
标识
DOI:10.1016/j.envres.2023.116365
摘要

Air quality index (AQI) is a key index for monitoring air pollution and can be used as guide for ensuring good public health. Accurate AQI prediction allows timely control and management of air pollution. In this study, a new integrated learning model was constructed to predict AQI. A smart reverse learning approach based on AMSSA was utilized to increase the diversity of populations, and an improved AMSSA (IAMSSA) was established. The optimum parameters with penalty factor α and mode number K of VMD were obtained using IAMSSA. The IAMSSA-VMD was used to decompose nonlinear and non-stationary AQI information series into several regular and smooth sub-sequences. The Sparrow Search Algorithm (SSA) was used to determine the optimum LSTM parameters. The results showed that: (1) IAMSSA exhibits faster convergence and higher accuracy and stability using simulation experiments compared with seven conventional optimization algorithms in 12 test functions. (2) IAMSSA-VMD was used to decompose the original air quality data results in multiple uncoupled intrinsic mode function (IMF) components and one residual (RES). An SSA-LSTM model was built for each IMF and one RES component, which effectively extracted the predicted values. (3) LSTM, SSA-LSTM, VMD-LSTM, VMD-SSA-LSTM, AMSSA-VMD-SSA-LSTM, and IAMSSA-VMD-SSA-LSTM models were used for prediction of AQI based on data from three cities (Chengdu, Guangzhou, and Shenyang). IAMSSA-VMD-SSA-LSTM exhibited the optimal prediction performance with MAE, RMSE, MAPE, and R2 of 3.692, 4.909, 6.241, and 0.981, respectively. (4) Generalization outcomes revealed that the IAMSSA-VMD-SSA-LSTM model had optimal generalization ability. In summary, the decomposition ensemble model proposed in this study has higher prediction accuracy, improved fitting effect and generalization ability compared with other models. These properties indicate the superiority of the decomposition ensemble model and provides a theoretical and technical basis for prediction of air pollution and ecosystem restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲奇发布了新的文献求助30
刚刚
会飞的猪发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
务实的鞯完成签到,获得积分10
3秒前
科研通AI6应助yy采纳,获得10
3秒前
3秒前
要减肥的镜子完成签到,获得积分10
4秒前
5秒前
FlipFlops完成签到,获得积分10
6秒前
6秒前
蓝天应助阿尔文采纳,获得10
6秒前
生动梦松应助科研通管家采纳,获得10
6秒前
不安冷风应助科研通管家采纳,获得10
7秒前
fifteen应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
鸣笛应助科研通管家采纳,获得30
7秒前
ricky应助科研通管家采纳,获得10
7秒前
不安冷风应助科研通管家采纳,获得10
7秒前
卤鸡腿应助科研通管家采纳,获得20
7秒前
Akim应助科研通管家采纳,获得10
8秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
不想干活应助科研通管家采纳,获得10
8秒前
不安冷风应助科研通管家采纳,获得10
8秒前
生动梦松应助科研通管家采纳,获得10
8秒前
不想干活应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
不想干活应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
不想干活应助科研通管家采纳,获得10
9秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888