An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique

空气质量指数 趋同(经济学) 计算机科学 一般化 算法 残余物 均方误差 希尔伯特-黄变换 人工智能 统计 数学 气象学 经济增长 白噪声 物理 数学分析 经济
作者
Kai Wang,Xinyue Fan,Xiaoyi Yang,Zhongli Zhou
出处
期刊:Environmental Research [Elsevier BV]
卷期号:232: 116365-116365 被引量:26
标识
DOI:10.1016/j.envres.2023.116365
摘要

Air quality index (AQI) is a key index for monitoring air pollution and can be used as guide for ensuring good public health. Accurate AQI prediction allows timely control and management of air pollution. In this study, a new integrated learning model was constructed to predict AQI. A smart reverse learning approach based on AMSSA was utilized to increase the diversity of populations, and an improved AMSSA (IAMSSA) was established. The optimum parameters with penalty factor α and mode number K of VMD were obtained using IAMSSA. The IAMSSA-VMD was used to decompose nonlinear and non-stationary AQI information series into several regular and smooth sub-sequences. The Sparrow Search Algorithm (SSA) was used to determine the optimum LSTM parameters. The results showed that: (1) IAMSSA exhibits faster convergence and higher accuracy and stability using simulation experiments compared with seven conventional optimization algorithms in 12 test functions. (2) IAMSSA-VMD was used to decompose the original air quality data results in multiple uncoupled intrinsic mode function (IMF) components and one residual (RES). An SSA-LSTM model was built for each IMF and one RES component, which effectively extracted the predicted values. (3) LSTM, SSA-LSTM, VMD-LSTM, VMD-SSA-LSTM, AMSSA-VMD-SSA-LSTM, and IAMSSA-VMD-SSA-LSTM models were used for prediction of AQI based on data from three cities (Chengdu, Guangzhou, and Shenyang). IAMSSA-VMD-SSA-LSTM exhibited the optimal prediction performance with MAE, RMSE, MAPE, and R2 of 3.692, 4.909, 6.241, and 0.981, respectively. (4) Generalization outcomes revealed that the IAMSSA-VMD-SSA-LSTM model had optimal generalization ability. In summary, the decomposition ensemble model proposed in this study has higher prediction accuracy, improved fitting effect and generalization ability compared with other models. These properties indicate the superiority of the decomposition ensemble model and provides a theoretical and technical basis for prediction of air pollution and ecosystem restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助HWS采纳,获得10
刚刚
刚刚
renkemaomao发布了新的文献求助10
刚刚
科研通AI6应助无题采纳,获得10
1秒前
张迪发布了新的文献求助10
1秒前
包包包发布了新的文献求助10
1秒前
田様应助林深采纳,获得10
2秒前
科研通AI5应助雨眠采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
赘婿应助安乐采纳,获得10
2秒前
3秒前
赘婿应助肥波爱吃鱼采纳,获得10
3秒前
maomao发布了新的文献求助10
3秒前
3秒前
weimin完成签到,获得积分10
3秒前
热心飞雪完成签到,获得积分10
3秒前
4秒前
leslie发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
搞怪的访梦完成签到,获得积分10
4秒前
cy发布了新的文献求助10
4秒前
老实靖荷完成签到 ,获得积分10
5秒前
田様应助liushu采纳,获得10
5秒前
呱啦呱啦发布了新的文献求助10
5秒前
Ava应助Molly采纳,获得10
6秒前
6秒前
cruise完成签到,获得积分20
6秒前
酷波er应助Sophia采纳,获得10
6秒前
李健应助Qiao采纳,获得10
6秒前
ding应助Ll采纳,获得10
6秒前
小马甲应助吃花蝴蝶吗采纳,获得10
6秒前
浮游应助ddd采纳,获得10
7秒前
ycy发布了新的文献求助10
8秒前
所所应助满意凡桃采纳,获得10
8秒前
9秒前
Orange应助梓辰采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4875222
求助须知:如何正确求助?哪些是违规求助? 4164267
关于积分的说明 12916595
捐赠科研通 3921439
什么是DOI,文献DOI怎么找? 2152871
邀请新用户注册赠送积分活动 1171000
关于科研通互助平台的介绍 1074942