An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique

空气质量指数 趋同(经济学) 计算机科学 一般化 算法 残余物 均方误差 希尔伯特-黄变换 人工智能 统计 数学 气象学 经济增长 白噪声 物理 数学分析 经济
作者
Kai Wang,Xinyue Fan,Xiaoyi Yang,Zhongli Zhou
出处
期刊:Environmental Research [Elsevier]
卷期号:232: 116365-116365 被引量:26
标识
DOI:10.1016/j.envres.2023.116365
摘要

Air quality index (AQI) is a key index for monitoring air pollution and can be used as guide for ensuring good public health. Accurate AQI prediction allows timely control and management of air pollution. In this study, a new integrated learning model was constructed to predict AQI. A smart reverse learning approach based on AMSSA was utilized to increase the diversity of populations, and an improved AMSSA (IAMSSA) was established. The optimum parameters with penalty factor α and mode number K of VMD were obtained using IAMSSA. The IAMSSA-VMD was used to decompose nonlinear and non-stationary AQI information series into several regular and smooth sub-sequences. The Sparrow Search Algorithm (SSA) was used to determine the optimum LSTM parameters. The results showed that: (1) IAMSSA exhibits faster convergence and higher accuracy and stability using simulation experiments compared with seven conventional optimization algorithms in 12 test functions. (2) IAMSSA-VMD was used to decompose the original air quality data results in multiple uncoupled intrinsic mode function (IMF) components and one residual (RES). An SSA-LSTM model was built for each IMF and one RES component, which effectively extracted the predicted values. (3) LSTM, SSA-LSTM, VMD-LSTM, VMD-SSA-LSTM, AMSSA-VMD-SSA-LSTM, and IAMSSA-VMD-SSA-LSTM models were used for prediction of AQI based on data from three cities (Chengdu, Guangzhou, and Shenyang). IAMSSA-VMD-SSA-LSTM exhibited the optimal prediction performance with MAE, RMSE, MAPE, and R2 of 3.692, 4.909, 6.241, and 0.981, respectively. (4) Generalization outcomes revealed that the IAMSSA-VMD-SSA-LSTM model had optimal generalization ability. In summary, the decomposition ensemble model proposed in this study has higher prediction accuracy, improved fitting effect and generalization ability compared with other models. These properties indicate the superiority of the decomposition ensemble model and provides a theoretical and technical basis for prediction of air pollution and ecosystem restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzy发布了新的文献求助10
刚刚
派大星完成签到,获得积分10
2秒前
热情嘉懿完成签到,获得积分10
3秒前
顺科研完成签到,获得积分20
3秒前
5秒前
5秒前
李爱国应助唐唐的猫咪采纳,获得10
5秒前
传奇3应助天天看文献采纳,获得10
6秒前
6秒前
6秒前
郁金香没有你的浴巾香完成签到 ,获得积分10
7秒前
7秒前
情怀应助xziyou采纳,获得10
8秒前
Mr.Jian完成签到,获得积分0
9秒前
科研通AI6应助zy采纳,获得10
9秒前
芋头胖发布了新的文献求助10
9秒前
Meyako应助豆芽菜采纳,获得10
9秒前
刘虹完成签到,获得积分20
9秒前
今后应助AlexLam采纳,获得10
10秒前
kplus发布了新的文献求助10
10秒前
妮妮发布了新的文献求助10
11秒前
剑神一笑发布了新的文献求助10
11秒前
pyx完成签到,获得积分10
12秒前
姜丝可乐发布了新的文献求助10
12秒前
chen发布了新的文献求助10
13秒前
怡然帅完成签到,获得积分10
13秒前
深情惜梦发布了新的文献求助10
15秒前
15秒前
NexusExplorer应助郁盈采纳,获得10
17秒前
浮游应助闪闪靖荷采纳,获得10
17秒前
17秒前
小蘑菇应助zhao采纳,获得10
19秒前
kiven完成签到,获得积分10
19秒前
20秒前
科研通AI6应助妮妮采纳,获得10
21秒前
21秒前
DSH完成签到,获得积分10
24秒前
在水一方应助kiven采纳,获得10
24秒前
24秒前
kplus完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354222
求助须知:如何正确求助?哪些是违规求助? 4486597
关于积分的说明 13967081
捐赠科研通 4387078
什么是DOI,文献DOI怎么找? 2410176
邀请新用户注册赠送积分活动 1402561
关于科研通互助平台的介绍 1376354