亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique

空气质量指数 趋同(经济学) 计算机科学 一般化 算法 残余物 均方误差 希尔伯特-黄变换 人工智能 统计 数学 气象学 经济增长 白噪声 物理 数学分析 经济
作者
Kai Wang,Xinyue Fan,Xiaoyi Yang,Zhongli Zhou
出处
期刊:Environmental Research [Elsevier]
卷期号:232: 116365-116365 被引量:26
标识
DOI:10.1016/j.envres.2023.116365
摘要

Air quality index (AQI) is a key index for monitoring air pollution and can be used as guide for ensuring good public health. Accurate AQI prediction allows timely control and management of air pollution. In this study, a new integrated learning model was constructed to predict AQI. A smart reverse learning approach based on AMSSA was utilized to increase the diversity of populations, and an improved AMSSA (IAMSSA) was established. The optimum parameters with penalty factor α and mode number K of VMD were obtained using IAMSSA. The IAMSSA-VMD was used to decompose nonlinear and non-stationary AQI information series into several regular and smooth sub-sequences. The Sparrow Search Algorithm (SSA) was used to determine the optimum LSTM parameters. The results showed that: (1) IAMSSA exhibits faster convergence and higher accuracy and stability using simulation experiments compared with seven conventional optimization algorithms in 12 test functions. (2) IAMSSA-VMD was used to decompose the original air quality data results in multiple uncoupled intrinsic mode function (IMF) components and one residual (RES). An SSA-LSTM model was built for each IMF and one RES component, which effectively extracted the predicted values. (3) LSTM, SSA-LSTM, VMD-LSTM, VMD-SSA-LSTM, AMSSA-VMD-SSA-LSTM, and IAMSSA-VMD-SSA-LSTM models were used for prediction of AQI based on data from three cities (Chengdu, Guangzhou, and Shenyang). IAMSSA-VMD-SSA-LSTM exhibited the optimal prediction performance with MAE, RMSE, MAPE, and R2 of 3.692, 4.909, 6.241, and 0.981, respectively. (4) Generalization outcomes revealed that the IAMSSA-VMD-SSA-LSTM model had optimal generalization ability. In summary, the decomposition ensemble model proposed in this study has higher prediction accuracy, improved fitting effect and generalization ability compared with other models. These properties indicate the superiority of the decomposition ensemble model and provides a theoretical and technical basis for prediction of air pollution and ecosystem restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
10秒前
单纯凡雁发布了新的文献求助10
12秒前
单纯凡雁完成签到,获得积分20
23秒前
32秒前
sskaze完成签到 ,获得积分10
33秒前
lingzhiyi发布了新的文献求助10
38秒前
lingzhiyi完成签到,获得积分10
47秒前
无花果应助raki采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
daomaihu完成签到,获得积分10
1分钟前
1分钟前
persi完成签到 ,获得积分10
1分钟前
zydaphne完成签到 ,获得积分10
1分钟前
2分钟前
chenlc971125完成签到 ,获得积分10
2分钟前
2分钟前
yue发布了新的文献求助10
2分钟前
actor2006完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
peter发布了新的文献求助10
2分钟前
2分钟前
英俊的铭应助peter采纳,获得10
2分钟前
在水一方应助yue采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
大个应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
咸鱼完成签到 ,获得积分10
3分钟前
yue完成签到,获得积分10
3分钟前
万能图书馆应助咸鱼采纳,获得10
3分钟前
呜呼完成签到,获得积分10
3分钟前
桐桐应助加湿器采纳,获得10
4分钟前
4分钟前
夏佳泽发布了新的文献求助10
4分钟前
天雨流芳完成签到 ,获得积分10
4分钟前
Jasper应助夏佳泽采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323925
求助须知:如何正确求助?哪些是违规求助? 4465024
关于积分的说明 13893967
捐赠科研通 4356721
什么是DOI,文献DOI怎么找? 2392995
邀请新用户注册赠送积分活动 1386535
关于科研通互助平台的介绍 1356693