Active Globally Explainable Learning for Medical Images via Class Association Embedding and Cyclic Adversarial Generation

嵌入 计算机科学 班级(哲学) 背景(考古学) 人工智能 对抗制 编码器 样品(材料) 联想(心理学) 代表(政治) 机器学习 模式识别(心理学) 政治 政治学 法学 古生物学 哲学 化学 认识论 色谱法 生物 操作系统
作者
Ruitao Xie,Jingbang Chen,Limai Jiang,Rui Xiao,Yi Pan,Yunpeng Cai
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.07306
摘要

Explainability poses a major challenge to artificial intelligence (AI) techniques. Current studies on explainable AI (XAI) lack the efficiency of extracting global knowledge about the learning task, thus suffer deficiencies such as imprecise saliency, context-aware absence and vague meaning. In this paper, we propose the class association embedding (CAE) approach to address these issues. We employ an encoder-decoder architecture to embed sample features and separate them into class-related and individual-related style vectors simultaneously. Recombining the individual-style code of a given sample with the class-style code of another leads to a synthetic sample with preserved individual characters but changed class assignment, following a cyclic adversarial learning strategy. Class association embedding distills the global class-related features of all instances into a unified domain with well separation between classes. The transition rules between different classes can be then extracted and further employed to individual instances. We then propose an active XAI framework which manipulates the class-style vector of a certain sample along guided paths towards the counter-classes, resulting in a series of counter-example synthetic samples with identical individual characters. Comparing these counterfactual samples with the original ones provides a global, intuitive illustration to the nature of the classification tasks. We adopt the framework on medical image classification tasks, which show that more precise saliency maps with powerful context-aware representation can be achieved compared with existing methods. Moreover, the disease pathology can be directly visualized via traversing the paths in the class-style space.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
刚刚
Liu发布了新的文献求助10
刚刚
刚刚
可爱的函函应助laissez_fairy采纳,获得10
刚刚
we完成签到,获得积分20
1秒前
1秒前
框框发布了新的文献求助10
1秒前
mz完成签到 ,获得积分10
2秒前
酷波er应助飞飞飞采纳,获得10
3秒前
隐形曼青应助ZZDXXX采纳,获得10
3秒前
伶俐绿柏发布了新的文献求助10
4秒前
4秒前
keke完成签到,获得积分10
4秒前
华仔应助轩辕寄风采纳,获得10
4秒前
科研通AI2S应助在我梦里绕采纳,获得10
4秒前
5秒前
5秒前
青荣完成签到,获得积分20
5秒前
Liqy发布了新的文献求助10
6秒前
香菜完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
星星轨迹完成签到,获得积分10
7秒前
大个应助guajiguaji采纳,获得10
7秒前
we发布了新的文献求助10
8秒前
8秒前
8秒前
彭于晏应助白三烯采纳,获得10
8秒前
8秒前
希望天下0贩的0应助Liu采纳,获得10
8秒前
9秒前
123lura发布了新的文献求助10
9秒前
9秒前
Vi发布了新的文献求助10
10秒前
10秒前
10秒前
所所应助MORNING采纳,获得10
11秒前
Ellie完成签到 ,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953854
求助须知:如何正确求助?哪些是违规求助? 3499843
关于积分的说明 11096972
捐赠科研通 3230263
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869663
科研通“疑难数据库(出版商)”最低求助积分说明 801530