Abstract Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO x ) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO x and inefficient hole transport. In this study, we introduced MoS 2 nanoparticles at the indium tin oxide (ITO) /NiO x interface to enhance the ITO surface and optimize the deposition of NiO x , resulting in increased conductivity linked to a ratio of Ni 3+ :Ni 2+ . This interface modification not only optimized energy level but also promoted hole transport and reduced defects. Consequently, IPSCs with MoS 2 modified at ITO/NiO x interface achieved a champion power conversion efficiency (PCE) of 21.42 %, compared to 20.25 % without modification. Additionally, unencapsulated IPSCs with this interface modification displayed improved stability under thermal, light, humidity and ambient conditions. This innovative strategy for ITO/NiO x interface modification efficiently promotes hole transportation and can be integrated with other interface engineering approaches, offering valuable insights for the development of highly efficient and stable IPSCs.