Intelligent Back-calculation Approach to Obtain Viscoelastic Properties of Asphalt Pavements on Bedrock using Falling Weight Deflectometer Tests

落锤式弯沉仪 动态模量 粘弹性 模数 偏转(物理) 相位角(天文学) 材料科学 结构工程 岩土工程 基岩 机械 沥青 地质学 动态力学分析 工程类 复合材料 物理 光学 聚合物 地貌学
作者
Yujing Wang,Yanqing Zhao,Fan Wu,Qi Sun
出处
期刊:Transportation Research Record [SAGE Publishing]
标识
DOI:10.1177/03611981241292582
摘要

The dynamic modulus, an important viscoelastic parameter of asphalt pavements, plays an essential role in the performance evaluation of pavement structure throughout the whole life cycle from design to in-service. The bedrock beneath the pavement structure will significantly influence the results of the deflection response in falling weight deflectometer testing and dynamic modulus back-calculation. This effect has often been neglected in traditional analysis or back-analysis. Here, an intelligent back-calculation method for the dynamic modulus of asphalt pavement on bedrock is proposed. The dynamic modulus intelligent back-calculation model is established by a convolutional neural network rather than general numerical methods. The datasets containing the deflection time history curves were from the spectral element method with fixed-end boundary conditions of viscoelastic surface asphalt pavements on bedrock. The accuracy of the intelligent back-calculation model, the sensitivity of the parameters in the modified Havriliak–Negami (MHN) model to the dynamic modulus master curve, and the deviation degree from the back-calculated master curves of the dynamic modulus and phase angle with larger and smaller errors to the theoretical curves are evaluated. The results demonstrated the model’s good back-calculation effect without any overfitting. Parameter changes in the MHN model caused the dynamic modulus master curves to shift up and down, rotate, or shift left and right in each frequency band with a positive or negative correlation. Moreover, the back-calculated master curves of the dynamic modulus and phase angle exhibited good agreement with the theoretical curves. The intelligent back-calculation approach exhibited validity, reliability, and broad applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
SYLH应助雾影觅光采纳,获得10
2秒前
傻瓜发布了新的文献求助10
2秒前
Echo完成签到,获得积分0
3秒前
3秒前
Max108完成签到,获得积分10
4秒前
李爱国应助TT采纳,获得10
4秒前
范浩然完成签到 ,获得积分20
5秒前
鲜艳的皮皮虾完成签到,获得积分10
5秒前
千禧发布了新的文献求助10
5秒前
慕青应助弱于一般人类采纳,获得10
6秒前
6秒前
6秒前
6秒前
Hello应助妥妥酱采纳,获得10
6秒前
KongHN发布了新的文献求助10
7秒前
小王发布了新的文献求助10
7秒前
7秒前
反方向的水豚应助ncc采纳,获得10
8秒前
zzqing完成签到,获得积分20
8秒前
李健应助Pauline采纳,获得10
9秒前
迎雪完成签到 ,获得积分10
9秒前
稳如老狗发布了新的文献求助10
10秒前
10秒前
Hello应助1234采纳,获得10
10秒前
英俊的铭应助司予采纳,获得30
10秒前
SciGPT应助Giinjju采纳,获得10
10秒前
大模型应助Crystal采纳,获得30
12秒前
夕荀完成签到,获得积分10
13秒前
chen发布了新的文献求助10
13秒前
13秒前
欢呼的棒棒糖完成签到,获得积分10
13秒前
风中天宇发布了新的文献求助10
13秒前
大个应助威武鸽子采纳,获得10
13秒前
郑微岚完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970394
求助须知:如何正确求助?哪些是违规求助? 3515139
关于积分的说明 11177107
捐赠科研通 3250335
什么是DOI,文献DOI怎么找? 1795254
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805054