Bioinformatics Analysis of Lactylation-Related Biomarkers and Potential Pathogenesis Mechanisms in Age-Related Macular Degeneration

黄斑变性 发病机制 医学 生物信息学 变性(医学) 生物 计算生物学 眼科 病理
作者
Chenwei Gui,Hao Yan,Rong Zhang,Guohong Zhou
出处
期刊:Current Genomics [Bentham Science Publishers]
卷期号:26
标识
DOI:10.2174/0113892029291661241114055924
摘要

Background: Lactylation is increasingly recognized to play a crucial role in human health and diseases. However, its involvement in age-related macular degeneration (AMD) remains largely unclear. Objective: The aim of this study was to identify and characterize the pivotal lactylation-related genes and explore their underlying mechanism in AMD. Methods: Gene expression profiles of AMD patients and control individuals were obtained and integrated from the GSE29801 and GSE50195 datasets. Differentially expressed genes (DEGs) were screened and intersected with lactylation-related genes for lactylation-related DEGs. Machine learning algorithms were used to identify hub genes associated with AMD. Subsequently, the selected hub genes were subject to correlation analysis, and reverse transcription quantitative real-time PCR (RT-qPCR) was used to detect the expression of hub genes in AMD patients and healthy control individuals. Results: A total of 68 lactylation-related DEGs in AMD were identified, and seven genes, including HMGN2, TOP2B, HNRNPH1, SF3A1, SRRM2, HIST1H1C, and HIST1H2BD were selected as key genes. RT-qPCR analysis validated that all 7 key genes were down-regulated in AMD patients. Conclusion: We identified seven lactylation-related key genes potentially associated with the progression of AMD, which might deepen our understanding of the underlying mechanisms involved in AMD and provide clues for the targeted therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BBking完成签到,获得积分10
刚刚
顾矜应助douyq采纳,获得10
刚刚
刚刚
1秒前
沉默洋葱完成签到,获得积分10
2秒前
镜子发布了新的文献求助10
3秒前
小北发布了新的文献求助10
4秒前
Lucas应助学术小王子采纳,获得10
5秒前
5秒前
cy关注了科研通微信公众号
5秒前
胡几枚发布了新的文献求助10
5秒前
JHcHuN完成签到,获得积分10
6秒前
6秒前
6秒前
Owen应助Tessa采纳,获得10
6秒前
Waqas发布了新的文献求助10
6秒前
英俊的铭应助xxxhl采纳,获得10
6秒前
gf发布了新的文献求助10
6秒前
yangya给yangya的求助进行了留言
7秒前
jianghe完成签到,获得积分10
8秒前
yy应助jacs111采纳,获得10
10秒前
曹梦梦发布了新的文献求助10
10秒前
华子黄发布了新的文献求助10
11秒前
CarolineOY应助小白采纳,获得10
11秒前
zzyytt完成签到,获得积分10
12秒前
香蕉觅云应助威武从霜采纳,获得10
12秒前
ysl发布了新的文献求助10
12秒前
搜集达人应助JHcHuN采纳,获得10
14秒前
14秒前
QASD发布了新的文献求助10
15秒前
小二郎应助张可采纳,获得10
15秒前
南山无梅落完成签到 ,获得积分10
16秒前
16秒前
17秒前
18秒前
叶叶完成签到 ,获得积分10
18秒前
一行发布了新的文献求助150
18秒前
18秒前
科研通AI2S应助exosome采纳,获得10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442