Robust Diagnosis of Acute Bacterial and Viral Infections via Host Gene Expression Rank-Based Ensemble Machine Learning Algorithm: A Multi-Cohort Model Development and Validation Study

秩(图论) 寄主(生物学) 队列 算法 集成学习 机器学习 人工智能 计算机科学 医学 内科学 生物 数学 生态学 组合数学
作者
Yifei Shen,Dongsheng Han,Wenxin Qu,Fei Yu,Dan Zhang,Yifan Xu,Enhui Shen,Qinjie Chu,Michael P. Timko,Longjiang Fan,Shufa Zheng,Yu Chen
出处
期刊:Clinical Chemistry [Oxford University Press]
标识
DOI:10.1093/clinchem/hvae220
摘要

The accurate and prompt diagnosis of infections is essential for improving patient outcomes and preventing bacterial drug resistance. Host gene expression profiling as an approach to infection diagnosis holds great potential in assisting early and accurate diagnosis of infection. To improve the precision of infection diagnosis, we developed InfectDiagno, a rank-based ensemble machine learning algorithm for infection diagnosis via host gene expression patterns. Eleven data sets were used as training data sets for the method development, and the InfectDiagno algorithm was optimized by multi-cohort training samples. Nine data sets were used as independent validation data sets for the method. We further validated the diagnostic capacity of InfectDiagno in a prospective clinical cohort. After selecting 100 feature genes based on their gene expression ranks for infection prediction, we trained a classifier using both a noninfected-vs-infected area under the receiver-operating characteristic curve (area under the curve [AUC] 0.95 [95% CI, 0.93-0.97]) and a bacterial-vs-viral AUC 0.95 (95% CI, 0.93-0.97). We then used the noninfected/infected classifier together with the bacterial/viral classifier to build a discriminating infection diagnosis model. The sensitivity was 0.931 and 0.872, and specificity 0.963 and 0.929, for bacterial and viral infections, respectively. We then applied InfectDiagno to a prospective clinical cohort (n = 517), and found it classified 95% of the samples correctly. Our study shows that the InfectDiagno algorithm is a powerful and robust tool to accurately identify infection in a real-world patient population, which has the potential to profoundly improve clinical care in the field of infection diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddm完成签到,获得积分10
1秒前
swetcol完成签到,获得积分10
2秒前
SEEU完成签到,获得积分10
2秒前
刘zy发布了新的文献求助10
2秒前
iNk应助千北采纳,获得20
2秒前
3秒前
revive完成签到,获得积分10
3秒前
21发布了新的文献求助30
4秒前
CXS完成签到,获得积分10
4秒前
CodeCraft应助归海书蝶采纳,获得10
5秒前
5秒前
南风应助耿肖肖采纳,获得10
5秒前
iwjlkdjalkjc发布了新的文献求助10
6秒前
坚强诗槐完成签到 ,获得积分10
6秒前
Cxyyyl完成签到 ,获得积分10
7秒前
明理芾完成签到,获得积分20
7秒前
starry发布了新的文献求助10
8秒前
9秒前
李健的小迷弟应助wei采纳,获得10
9秒前
可靠大娘完成签到,获得积分10
10秒前
QY发布了新的文献求助10
10秒前
11秒前
Labetalol完成签到,获得积分10
11秒前
11秒前
合适的楷瑞完成签到,获得积分20
12秒前
王鹏程完成签到,获得积分10
13秒前
五号完成签到,获得积分10
13秒前
明理芾发布了新的文献求助10
14秒前
王鹏程发布了新的文献求助10
16秒前
小二郎应助九月清晨采纳,获得10
17秒前
17秒前
在水一方应助Nia采纳,获得10
17秒前
17秒前
Candice应助Emmmm采纳,获得10
17秒前
顺利的飞荷完成签到,获得积分0
17秒前
cyyyyyy发布了新的文献求助10
18秒前
沉静盼易发布了新的文献求助10
20秒前
zhaojj发布了新的文献求助10
22秒前
CipherSage应助lxz采纳,获得10
22秒前
cxh完成签到,获得积分10
23秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Standard Specification for Polyolefin Chopped Strands for Use in Concrete 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416917
求助须知:如何正确求助?哪些是违规求助? 3018733
关于积分的说明 8884958
捐赠科研通 2705950
什么是DOI,文献DOI怎么找? 1483992
科研通“疑难数据库(出版商)”最低求助积分说明 685870
邀请新用户注册赠送积分活动 681074