Robust Diagnosis of Acute Bacterial and Viral Infections via Host Gene Expression Rank-Based Ensemble Machine Learning Algorithm: A Multi-Cohort Model Development and Validation Study

秩(图论) 寄主(生物学) 队列 算法 集成学习 机器学习 人工智能 计算机科学 医学 内科学 生物 数学 生态学 组合数学
作者
Yifei Shen,Dongsheng Han,Wenxin Qu,Fei Yu,Dan Zhang,Yifan Xu,Enhui Shen,Qinjie Chu,Michael P. Timko,Longjiang Fan,Shufa Zheng,Yu Chen
出处
期刊:Clinical Chemistry [American Association for Clinical Chemistry]
标识
DOI:10.1093/clinchem/hvae220
摘要

The accurate and prompt diagnosis of infections is essential for improving patient outcomes and preventing bacterial drug resistance. Host gene expression profiling as an approach to infection diagnosis holds great potential in assisting early and accurate diagnosis of infection. To improve the precision of infection diagnosis, we developed InfectDiagno, a rank-based ensemble machine learning algorithm for infection diagnosis via host gene expression patterns. Eleven data sets were used as training data sets for the method development, and the InfectDiagno algorithm was optimized by multi-cohort training samples. Nine data sets were used as independent validation data sets for the method. We further validated the diagnostic capacity of InfectDiagno in a prospective clinical cohort. After selecting 100 feature genes based on their gene expression ranks for infection prediction, we trained a classifier using both a noninfected-vs-infected area under the receiver-operating characteristic curve (area under the curve [AUC] 0.95 [95% CI, 0.93-0.97]) and a bacterial-vs-viral AUC 0.95 (95% CI, 0.93-0.97). We then used the noninfected/infected classifier together with the bacterial/viral classifier to build a discriminating infection diagnosis model. The sensitivity was 0.931 and 0.872, and specificity 0.963 and 0.929, for bacterial and viral infections, respectively. We then applied InfectDiagno to a prospective clinical cohort (n = 517), and found it classified 95% of the samples correctly. Our study shows that the InfectDiagno algorithm is a powerful and robust tool to accurately identify infection in a real-world patient population, which has the potential to profoundly improve clinical care in the field of infection diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助wei采纳,获得10
刚刚
研友_VZG7GZ应助一个小胖子采纳,获得10
刚刚
1秒前
1秒前
吃的了细糠的山猪完成签到,获得积分10
1秒前
SYLH应助SmallBamboo采纳,获得30
1秒前
zhen发布了新的文献求助10
1秒前
ange完成签到,获得积分10
1秒前
mym完成签到,获得积分10
2秒前
3秒前
嘻哈小天才完成签到 ,获得积分10
4秒前
Jenny发布了新的文献求助10
5秒前
Active发布了新的文献求助10
8秒前
9秒前
9秒前
吃花生酱的猫完成签到,获得积分10
14秒前
体贴汽车发布了新的文献求助10
16秒前
zbx完成签到,获得积分10
16秒前
19秒前
ZHUZHU发布了新的文献求助10
21秒前
22秒前
xdl120318发布了新的文献求助10
22秒前
23秒前
脑洞疼应助zhen采纳,获得10
24秒前
CipherSage应助CY采纳,获得10
24秒前
研友_VZG7GZ应助风-FBDD采纳,获得10
26秒前
火星上雨珍完成签到,获得积分10
28秒前
28秒前
29秒前
俊逸沛菡发布了新的文献求助10
30秒前
32秒前
FashionBoy应助大大采纳,获得10
32秒前
大个应助Jenny采纳,获得10
34秒前
卡诺循环完成签到,获得积分10
35秒前
君君发布了新的文献求助10
35秒前
35秒前
zyy201403关注了科研通微信公众号
36秒前
文静元霜完成签到 ,获得积分10
36秒前
36秒前
shinn发布了新的文献求助10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512526
关于积分的说明 11163850
捐赠科研通 3247430
什么是DOI,文献DOI怎么找? 1793831
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804494