Integrating fault detection and classification in microgrids using supervised machine learning considering fault resistance uncertainty

计算机科学 可靠性(半导体) 支持向量机 断层(地质) 可靠性工程 故障检测与隔离 构造(python库) 方案(数学) 数据挖掘 机器学习 人工智能 工程类 地震学 执行机构 地质学 数学分析 功率(物理) 物理 数学 量子力学 程序设计语言
作者
Morteza Barkhi,Javad Poorhossein,Seyed Ali Hosseini
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-77982-7
摘要

Microgrids (MGs) can enhance the consumers' reliability. Nevertheless, besides significant outcomes, some challenges arise. Regarding the intermittent nature of Renewable Energy Resources (RESs), MGs are not operated radially. Accordingly, the reliable protection of MGs considering uncertainty in RESs is crucial for planners and operators. This paper uses data analysis to extract knowledge from locally available measurements using RMS values of symmetrical components. The learning-based characteristic of the suggested technique with a low computational burden exempts the need for an available communication infrastructure in the MG. The Support Vector Machine (SVM) technique is applied to train the Intelligent Electronic Devices to have a reliable MG protection scheme. The proposed method, which performs fault detection and classification together, just requires local information and functions effectively to discriminate faulty from normal conditions considering different uncertainty of resistance faults. Digital simulations on an MV test network were conducted to construct an appropriate database to consider some aspects of uncertainty in the network. The various faults considering their uncertainty, the different modes of operation, the uncertainty of RESs generation, and the load levels are combined to produce myriad scenarios. The simulation results confirm the effectiveness of the proposed adaptive protection approach in accurately distinguishing different system modes and consistently protecting the MG, achieving an accuracy rate of 99.75%. Furthermore, it offers the MG an optimal protection scheme that is not limited by selectivity constraints across diverse conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ning00000完成签到 ,获得积分10
刚刚
咎星完成签到,获得积分10
刚刚
刚刚
科研通AI5应助芒果与鱼采纳,获得10
2秒前
欢喜的天空完成签到,获得积分20
4秒前
打打应助旺旺碎冰冰采纳,获得10
4秒前
潇潇发布了新的文献求助10
7秒前
8秒前
贲半梦完成签到,获得积分10
8秒前
9秒前
桐桐应助VitoLi采纳,获得10
11秒前
12秒前
如意契发布了新的文献求助10
12秒前
圈儿多尼发布了新的文献求助10
12秒前
逆光如殇应助西奥采纳,获得10
14秒前
J曌Chen完成签到,获得积分10
14秒前
KYST完成签到,获得积分10
14秒前
外向的跳跳糖完成签到,获得积分10
15秒前
15秒前
思源应助科研牛马采纳,获得10
15秒前
16秒前
16秒前
SYLH应助旺旺碎冰冰采纳,获得10
16秒前
17秒前
huang完成签到,获得积分10
17秒前
zjh完成签到,获得积分10
18秒前
18秒前
Dr.Jiang完成签到,获得积分10
19秒前
19秒前
20秒前
素简完成签到,获得积分10
20秒前
小柒完成签到,获得积分10
21秒前
huang发布了新的文献求助10
21秒前
田様应助王不留行采纳,获得10
21秒前
www完成签到,获得积分10
21秒前
传奇3应助zhuding1978采纳,获得10
22秒前
26秒前
Akim应助lw采纳,获得10
26秒前
27秒前
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737690
求助须知:如何正确求助?哪些是违规求助? 3281323
关于积分的说明 10024607
捐赠科研通 2998066
什么是DOI,文献DOI怎么找? 1645021
邀请新用户注册赠送积分活动 782472
科研通“疑难数据库(出版商)”最低求助积分说明 749814