Special Rubber with Excellent Mechanical Strength, Environmental Stability, and Electrical Conductivity for Accordion‐Structured High‐Performance Triboelectric Nanogenerators

摩擦电效应 材料科学 机械能 能量收集 纳米发生器 天然橡胶 纳米技术 功率(物理) 复合材料 物理 量子力学 压电
作者
Wei Gao,Wenyu Pan,Xuehan Gao,Ting Xie,Fangyan Ou,Chuang Ning,Z. Fu,Fuqi Wang,Tao Gan,Zhiyong Qin,Zengxi Wei,Qian Sun,Zequan Li,Chuanhui Xu,Shuangliang Zhao
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202425366
摘要

Abstract Triboelectric nanogenerators (TENGs) are an emerging energy‐harvesting technology capable of converting mechanical energy into electrical energy. However, triboelectric layers, crucial components of TENGs, are susceptible to mechanical and structural damage in harsh environments, thereby compromising the device's output performance and limiting its applicability. Therefore, developing triboelectric layers with excellent mechanical strength and environmental stability poses a challenge. Inspired by the intricate multiple cross‐linking networks present in myofibrillar proteins, a strategy of multiple cross‐linking is proposed to prepare conductive special rubbers with outstanding mechanical strength (13.5 MPa), environmental stability, and electrical conductivity (0.86 S m −1 ) using a “grafting–hydrogenation–cross‐linking–filling” process. The multiple cross‐linking networks considerably enhanced the rubber's strength by 100 times (0.3–30.3 MPa). Subsequently, these special rubbers are employed as triboelectric layers in accordion‐structured TENGs, which demonstrated exceptional electrical output performance with an open‐circuit voltage of 723 V and a power density of up to 3.25 W m −2 . TENGs can operate stably in a wide range of harsh environments. This study provides a viable strategy for designing TENGs capable of functioning in harsh environments, thereby contributing to sustainable energy solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
tjl完成签到,获得积分10
1秒前
1秒前
1秒前
sonny完成签到,获得积分10
2秒前
2秒前
典雅送终发布了新的文献求助10
2秒前
2秒前
2秒前
zhu给zhu的求助进行了留言
2秒前
orixero应助最最采纳,获得10
2秒前
ZHOUMOU完成签到,获得积分10
3秒前
3秒前
郷禦发布了新的文献求助10
3秒前
4秒前
4秒前
Raine发布了新的文献求助10
4秒前
Hulda发布了新的文献求助10
4秒前
4秒前
白方明发布了新的文献求助10
4秒前
4秒前
奔放的老青年完成签到,获得积分10
6秒前
爱听歌契发布了新的文献求助10
6秒前
123321完成签到,获得积分10
7秒前
digger2023发布了新的文献求助10
7秒前
温柔谷冬完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
CodeCraft应助非鱼采纳,获得10
9秒前
9秒前
酷酷的飞双应助白耳猫采纳,获得10
9秒前
9秒前
cc发布了新的文献求助10
9秒前
坦率晓霜完成签到,获得积分10
10秒前
100完成签到,获得积分10
10秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474762
求助须知:如何正确求助?哪些是违规求助? 3066860
关于积分的说明 9101503
捐赠科研通 2758260
什么是DOI,文献DOI怎么找? 1513498
邀请新用户注册赠送积分活动 699576
科研通“疑难数据库(出版商)”最低求助积分说明 699031