材料科学
骨整合
压电
基质(水族馆)
纳米技术
骨形成
生物医学工程
光电子学
植入
复合材料
医学
外科
海洋学
内分泌学
地质学
作者
Xiaowen Sun,Yaru Guo,Xiaona Zheng,Yunyang Bai,Yi-Xuan Lü,Yang Xue,Ziming Cai,Erxiang Xu,Ying He,Boon Chin Heng,Mingming Xu,Xuliang Deng,Xuehui Zhang
标识
DOI:10.1002/adma.202414161
摘要
The electrical properties of bone implant scaffolds are a pivotal factor in regulating cellular behavior and promoting osteogenesis. The previous study shows that built-in electric fields established between electropositive nanofilms and electronegative bone defect walls are beneficial for promoting bone defect healing. Considering that the physiological electrical microenvironment is spatially distributed in 3D, it is imperative to establish a 3D spatial charged microenvironment on bone scaffolds to optimize the efficacy of osseointegration. Nevertheless, this still poses a formidable challenge. Here, a bone repair strategy that utilizes micro-scale 3D topography is developed on a piezoelectric BaTiO
科研通智能强力驱动
Strongly Powered by AbleSci AI