Utilizing a combination of experimental and machine learning methods to predict and correlate between accelerated and natural aging of CFRP/AL adhesive joints under hygrothermal conditions

材料科学 复合材料 胶粘剂 结构工程 工程类 图层(电子)
作者
Sajjad Karimi,Jianyong Yu
出处
期刊:Polymer Composites [Wiley]
被引量:4
标识
DOI:10.1002/pc.29226
摘要

Abstract This study investigates how carbon fiber reinforced polymer (CFRP)‐to‐aluminum adhesive joints behave under accelerated aging conditions with hygrothermal exposure and compares these findings against naturally aged samples to evaluate material reliability in challenging environments. The CFRP‐to‐aluminum adhesive joints were manufactured and subjected to natural aging for durations ranging from 1 to 3 years with 6‐month intervals, as well as accelerated aging (hygrothermal) for periods ranging from 100 to 1200 h, with intervals of 50 h. Subsequently, the mechanical properties of the joints were evaluated using a three‐point bending test. To forecast natural aging times from accelerated aging data, five machine learning models were utilized: artificial neural network, support vector regression, linear regression, polynomial regression, and random forest regression. Hygrothermal aging significantly degraded the matrix, causing a shift in failure modes from cohesive to mixed types (cohesive, adhesive, and fiber tear failures), leading to a notable decline in bending strength. The study observed a 23.13% strength reduction in samples aged naturally for 3 years and a 24.33% decrease in those subjected to 1000 h of accelerated aging. The random forest regressor demonstrated superior accuracy in predicting natural aging times across different accelerated aging periods. Through the application of machine learning models, this study introduces a novel approach to forecast natural aging durations using data from accelerated aging experiments. This method shows potential for optimizing joints and composite structures, ultimately improving their durability and minimizing the likelihood of failures during operational use. Highlights Studied hygrothermal effects on accelerated aging of carbon fiber reinforced polymer/Aluminum (AL) adhesive joints. Noted strength reduction from hygrothermal aging. Used five machine learning models; random forest regression had the highest accuracy. Analyzed correlation between natural and accelerated aging of dissimilar adhesive joints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
LINCHEN发布了新的文献求助10
1秒前
阿刚发布了新的文献求助10
1秒前
思源应助星落枕畔采纳,获得10
1秒前
谨慎雅山发布了新的文献求助10
1秒前
2秒前
2秒前
科研通AI6应助王少辉采纳,获得10
2秒前
3秒前
YY完成签到 ,获得积分10
4秒前
123pc完成签到,获得积分10
4秒前
张天赐完成签到,获得积分10
5秒前
yshj发布了新的文献求助10
5秒前
5秒前
星星的梦完成签到,获得积分10
6秒前
KKKK发布了新的文献求助10
6秒前
浮游应助大意的乐菱采纳,获得10
6秒前
田安平发布了新的文献求助10
6秒前
纯真雁菱发布了新的文献求助10
6秒前
7秒前
7秒前
zero完成签到,获得积分10
7秒前
8秒前
烤冷面应助我有一双AJ哇采纳,获得10
8秒前
8秒前
天天快乐应助魏泽旭采纳,获得10
8秒前
9秒前
9秒前
pia叽完成签到 ,获得积分10
9秒前
Tourist应助加菲丰丰采纳,获得150
10秒前
10秒前
Mr.木子发布了新的文献求助10
11秒前
Owen应助LINCHEN采纳,获得10
11秒前
淡dan发布了新的文献求助30
11秒前
思源应助猫好好采纳,获得10
13秒前
13秒前
bodhi发布了新的文献求助10
13秒前
积极凌兰完成签到 ,获得积分10
13秒前
杨斐斐完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5112070
求助须知:如何正确求助?哪些是违规求助? 4320005
关于积分的说明 13460639
捐赠科研通 4150914
什么是DOI,文献DOI怎么找? 2274512
邀请新用户注册赠送积分活动 1276377
关于科研通互助平台的介绍 1214608