Utilizing a combination of experimental and machine learning methods to predict and correlate between accelerated and natural aging of CFRP/AL adhesive joints under hygrothermal conditions

材料科学 复合材料 胶粘剂 结构工程 工程类 图层(电子)
作者
Sajjad Karimi,Jianyong Yu
出处
期刊:Polymer Composites [Wiley]
被引量:4
标识
DOI:10.1002/pc.29226
摘要

Abstract This study investigates how carbon fiber reinforced polymer (CFRP)‐to‐aluminum adhesive joints behave under accelerated aging conditions with hygrothermal exposure and compares these findings against naturally aged samples to evaluate material reliability in challenging environments. The CFRP‐to‐aluminum adhesive joints were manufactured and subjected to natural aging for durations ranging from 1 to 3 years with 6‐month intervals, as well as accelerated aging (hygrothermal) for periods ranging from 100 to 1200 h, with intervals of 50 h. Subsequently, the mechanical properties of the joints were evaluated using a three‐point bending test. To forecast natural aging times from accelerated aging data, five machine learning models were utilized: artificial neural network, support vector regression, linear regression, polynomial regression, and random forest regression. Hygrothermal aging significantly degraded the matrix, causing a shift in failure modes from cohesive to mixed types (cohesive, adhesive, and fiber tear failures), leading to a notable decline in bending strength. The study observed a 23.13% strength reduction in samples aged naturally for 3 years and a 24.33% decrease in those subjected to 1000 h of accelerated aging. The random forest regressor demonstrated superior accuracy in predicting natural aging times across different accelerated aging periods. Through the application of machine learning models, this study introduces a novel approach to forecast natural aging durations using data from accelerated aging experiments. This method shows potential for optimizing joints and composite structures, ultimately improving their durability and minimizing the likelihood of failures during operational use. Highlights Studied hygrothermal effects on accelerated aging of carbon fiber reinforced polymer/Aluminum (AL) adhesive joints. Noted strength reduction from hygrothermal aging. Used five machine learning models; random forest regression had the highest accuracy. Analyzed correlation between natural and accelerated aging of dissimilar adhesive joints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xyj6486发布了新的文献求助10
1秒前
李BO完成签到 ,获得积分10
2秒前
3秒前
4秒前
SciGPT应助Xixicccccccc采纳,获得10
4秒前
4秒前
heavenzzz发布了新的文献求助10
5秒前
所所应助大反应釜采纳,获得10
5秒前
Orange应助吴所谓采纳,获得50
6秒前
6秒前
无知小白完成签到,获得积分10
6秒前
moumou完成签到,获得积分10
7秒前
李钧鹏完成签到,获得积分10
7秒前
laber应助小诗人采纳,获得50
8秒前
有魅力的不评完成签到,获得积分10
8秒前
麋鹿发布了新的文献求助10
8秒前
10秒前
火星上含海完成签到,获得积分10
12秒前
小马甲应助张雯思采纳,获得10
16秒前
41应助张雯思采纳,获得10
16秒前
李健的粉丝团团长应助123采纳,获得10
16秒前
孙燕应助张雯思采纳,获得10
16秒前
打打应助张雯思采纳,获得10
16秒前
情怀应助张雯思采纳,获得10
16秒前
孙燕应助张雯思采纳,获得10
16秒前
Hello应助张雯思采纳,获得10
16秒前
搜集达人应助张雯思采纳,获得10
16秒前
赘婿应助张雯思采纳,获得10
16秒前
今后应助张雯思采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
麋鹿完成签到,获得积分20
17秒前
赵子完成签到,获得积分10
20秒前
英姑应助会飞的鱼采纳,获得10
21秒前
24秒前
FashionBoy应助勤恳化蛹采纳,获得10
25秒前
27秒前
平淡小白菜完成签到,获得积分10
29秒前
lzx发布了新的文献求助10
30秒前
Jun发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174