Utilizing a combination of experimental and machine learning methods to predict and correlate between accelerated and natural aging of CFRP/AL adhesive joints under hygrothermal conditions

材料科学 复合材料 胶粘剂 结构工程 工程类 图层(电子)
作者
Sajjad Karimi,Jianyong Yu
出处
期刊:Polymer Composites [Wiley]
标识
DOI:10.1002/pc.29226
摘要

Abstract This study investigates how carbon fiber reinforced polymer (CFRP)‐to‐aluminum adhesive joints behave under accelerated aging conditions with hygrothermal exposure and compares these findings against naturally aged samples to evaluate material reliability in challenging environments. The CFRP‐to‐aluminum adhesive joints were manufactured and subjected to natural aging for durations ranging from 1 to 3 years with 6‐month intervals, as well as accelerated aging (hygrothermal) for periods ranging from 100 to 1200 h, with intervals of 50 h. Subsequently, the mechanical properties of the joints were evaluated using a three‐point bending test. To forecast natural aging times from accelerated aging data, five machine learning models were utilized: artificial neural network, support vector regression, linear regression, polynomial regression, and random forest regression. Hygrothermal aging significantly degraded the matrix, causing a shift in failure modes from cohesive to mixed types (cohesive, adhesive, and fiber tear failures), leading to a notable decline in bending strength. The study observed a 23.13% strength reduction in samples aged naturally for 3 years and a 24.33% decrease in those subjected to 1000 h of accelerated aging. The random forest regressor demonstrated superior accuracy in predicting natural aging times across different accelerated aging periods. Through the application of machine learning models, this study introduces a novel approach to forecast natural aging durations using data from accelerated aging experiments. This method shows potential for optimizing joints and composite structures, ultimately improving their durability and minimizing the likelihood of failures during operational use. Highlights Studied hygrothermal effects on accelerated aging of carbon fiber reinforced polymer/Aluminum (AL) adhesive joints. Noted strength reduction from hygrothermal aging. Used five machine learning models; random forest regression had the highest accuracy. Analyzed correlation between natural and accelerated aging of dissimilar adhesive joints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
longmad完成签到,获得积分10
刚刚
皮皮发布了新的文献求助10
3秒前
Ansen发布了新的文献求助10
4秒前
枫于林完成签到 ,获得积分10
5秒前
luluyang完成签到 ,获得积分10
6秒前
C_Li完成签到,获得积分10
10秒前
Ansen完成签到,获得积分10
14秒前
青桔完成签到,获得积分10
16秒前
courage完成签到,获得积分10
16秒前
ylyao完成签到,获得积分10
17秒前
demom完成签到,获得积分10
18秒前
18秒前
兮以城空完成签到,获得积分10
21秒前
sunnyqqz完成签到,获得积分10
22秒前
睡觉王完成签到 ,获得积分10
23秒前
胡杨树2006完成签到,获得积分10
24秒前
26秒前
sk夏冰完成签到 ,获得积分10
26秒前
sdbz001完成签到,获得积分10
26秒前
皮皮完成签到 ,获得积分10
27秒前
乔杰完成签到 ,获得积分10
30秒前
31秒前
帆帆帆完成签到 ,获得积分10
33秒前
Jieh完成签到,获得积分10
37秒前
夏仁培完成签到,获得积分20
39秒前
松柏完成签到 ,获得积分10
39秒前
ys118完成签到 ,获得积分10
41秒前
轩辕中蓝完成签到 ,获得积分10
42秒前
杂菜流完成签到,获得积分10
46秒前
cata完成签到,获得积分10
47秒前
heija完成签到,获得积分10
47秒前
乌云乌云快走开完成签到,获得积分10
49秒前
小九完成签到,获得积分10
49秒前
芒果布丁完成签到 ,获得积分10
49秒前
wwyy完成签到 ,获得积分10
51秒前
vassallo完成签到 ,获得积分10
56秒前
netyouxiang完成签到,获得积分10
57秒前
SAINT完成签到 ,获得积分10
1分钟前
zx完成签到 ,获得积分10
1分钟前
一页书完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311314
求助须知:如何正确求助?哪些是违规求助? 2944006
关于积分的说明 8516896
捐赠科研通 2619458
什么是DOI,文献DOI怎么找? 1432306
科研通“疑难数据库(出版商)”最低求助积分说明 664597
邀请新用户注册赠送积分活动 649856