SHM System for Composite Material Based on Lamb Waves and Using Machine Learning on Hardware

兰姆波 复合数 计算机科学 结构健康监测 计算机硬件 声学 工程类 电气工程 物理 电信 表面波 算法
作者
Gracieth C. Batista,Carl‐Mikael Zetterling,Johnny Öberg,Osamu Saotome
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (23): 7817-7817
标识
DOI:10.3390/s24237817
摘要

There is extensive use of nondestructive test (NDT) inspections on aircraft, and many techniques nowadays exist to inspect failures and cracks in their structures. Moreover, NDT inspections are part of a more general structural health monitoring (SHM) system, where cutting-edge technologies are needed as powerful resources to achieve high performance. The high-performance aspects of SHM systems are response time, power consumption, and usability, which are difficult to achieve because of the system's complexity. Then, it is even more challenging to develop a real-time low-power SHM system. Today, the ideal process is for structural health information extraction to be completed on the flight; however, the defects and damage are quantitatively made offline and on the ground, and sometimes, the respective procedure test is applied later on the ground, after the flight. For this reason, the present paper introduces an FPGA-based intelligent SHM system that processes Lamb wave signals using piezoelectric sensors to detect, classify, and locate damage in composite structures. The system employs machine learning (ML), specifically support vector machines (SVM), to classify damage while addressing outlier challenges with the Mahalanobis distance during the classification phase. To process the complex Lamb wave signals, the system incorporates well-known signal processing (DSP) techniques, including power spectrum density (PSD), wavelet transform, and Principal Component Analysis (PCA), for noise reduction, feature extraction, and data compression. These techniques enable the system to handle material anisotropy and mitigate the effects of edge reflections and mode conversions. Damage is quantitatively evaluated with classification accuracies of 96.25% for internal defects and 97.5% for external defects, with localization achieved by associating receiver positions with damage occurrence. This robust system is validated through experiments and demonstrates its potential for real-time applications in aerospace composite structures, addressing challenges related to material complexity, outliers, and scalable hardware implementation for larger sensor networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wish完成签到,获得积分10
1秒前
2秒前
dm发布了新的文献求助10
2秒前
哇wwwww发布了新的文献求助10
2秒前
2秒前
abcdefg发布了新的文献求助10
4秒前
高不二发布了新的文献求助10
4秒前
5秒前
Eins完成签到 ,获得积分10
5秒前
5秒前
5秒前
7秒前
小学生发布了新的文献求助10
9秒前
壹君发布了新的文献求助10
11秒前
大方的荟发布了新的文献求助10
11秒前
所所应助wish采纳,获得10
11秒前
Gopal发布了新的文献求助10
11秒前
zho关闭了zho文献求助
12秒前
左丘丹烟完成签到,获得积分10
13秒前
科研通AI2S应助KDS采纳,获得10
14秒前
李是一朵花完成签到,获得积分10
16秒前
深情安青应助高不二采纳,获得10
17秒前
冰晨完成签到,获得积分10
17秒前
斯文败类应助好运小陈采纳,获得10
18秒前
沉默的友安完成签到 ,获得积分10
21秒前
琪琪完成签到,获得积分10
21秒前
qiuxuan100完成签到,获得积分10
21秒前
共享精神应助华W采纳,获得10
21秒前
山山而川发布了新的文献求助10
25秒前
星辰大海应助醉酒笑红尘采纳,获得30
26秒前
hannah完成签到,获得积分10
26秒前
lone623应助欣喜沛芹采纳,获得10
27秒前
852应助无心的土豆采纳,获得10
27秒前
彭于晏应助Chocolate001采纳,获得10
32秒前
充电宝应助要减肥安南采纳,获得10
33秒前
33秒前
34秒前
受伤雨南完成签到,获得积分10
35秒前
37秒前
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999264
求助须知:如何正确求助?哪些是违规求助? 3538622
关于积分的说明 11274738
捐赠科研通 3277531
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883950
科研通“疑难数据库(出版商)”最低求助积分说明 810080