清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SHM System for Composite Material Based on Lamb Waves and Using Machine Learning on Hardware

兰姆波 复合数 计算机科学 结构健康监测 计算机硬件 声学 工程类 电气工程 物理 电信 表面波 算法
作者
Gracieth C. Batista,Carl‐Mikael Zetterling,Johnny Öberg,Osamu Saotome
出处
期刊:Sensors [MDPI AG]
卷期号:24 (23): 7817-7817
标识
DOI:10.3390/s24237817
摘要

There is extensive use of nondestructive test (NDT) inspections on aircraft, and many techniques nowadays exist to inspect failures and cracks in their structures. Moreover, NDT inspections are part of a more general structural health monitoring (SHM) system, where cutting-edge technologies are needed as powerful resources to achieve high performance. The high-performance aspects of SHM systems are response time, power consumption, and usability, which are difficult to achieve because of the system's complexity. Then, it is even more challenging to develop a real-time low-power SHM system. Today, the ideal process is for structural health information extraction to be completed on the flight; however, the defects and damage are quantitatively made offline and on the ground, and sometimes, the respective procedure test is applied later on the ground, after the flight. For this reason, the present paper introduces an FPGA-based intelligent SHM system that processes Lamb wave signals using piezoelectric sensors to detect, classify, and locate damage in composite structures. The system employs machine learning (ML), specifically support vector machines (SVM), to classify damage while addressing outlier challenges with the Mahalanobis distance during the classification phase. To process the complex Lamb wave signals, the system incorporates well-known signal processing (DSP) techniques, including power spectrum density (PSD), wavelet transform, and Principal Component Analysis (PCA), for noise reduction, feature extraction, and data compression. These techniques enable the system to handle material anisotropy and mitigate the effects of edge reflections and mode conversions. Damage is quantitatively evaluated with classification accuracies of 96.25% for internal defects and 97.5% for external defects, with localization achieved by associating receiver positions with damage occurrence. This robust system is validated through experiments and demonstrates its potential for real-time applications in aerospace composite structures, addressing challenges related to material complexity, outliers, and scalable hardware implementation for larger sensor networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助飞翔的企鹅采纳,获得30
1分钟前
果酱完成签到,获得积分10
1分钟前
1分钟前
愤怒的白亦关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
科研通AI5应助十八采纳,获得10
1分钟前
2分钟前
2分钟前
疯狂的易真完成签到,获得积分20
2分钟前
飞翔的企鹅完成签到,获得积分0
2分钟前
大模型应助疯狂的易真采纳,获得30
2分钟前
2分钟前
十八发布了新的文献求助10
2分钟前
3分钟前
董小娇发布了新的文献求助10
3分钟前
圆圆完成签到 ,获得积分10
3分钟前
研友_nxw2xL完成签到,获得积分10
3分钟前
muriel完成签到,获得积分10
3分钟前
畅快沁完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
twk发布了新的文献求助10
4分钟前
twk完成签到,获得积分10
4分钟前
小西完成签到 ,获得积分10
4分钟前
疯狂的易真关注了科研通微信公众号
4分钟前
铲一口美羊羊完成签到 ,获得积分10
4分钟前
万崽秋秋糖完成签到 ,获得积分10
4分钟前
5分钟前
Crystal完成签到 ,获得积分10
6分钟前
艺霖大王完成签到 ,获得积分10
7分钟前
xiazhq完成签到,获得积分10
7分钟前
土豪的土豆完成签到 ,获得积分10
7分钟前
桐桐应助YUNJIE采纳,获得10
7分钟前
汉堡包应助miujin采纳,获得10
7分钟前
DrN完成签到 ,获得积分10
8分钟前
自然涵易完成签到,获得积分10
8分钟前
YuLu完成签到 ,获得积分10
8分钟前
圆规完成签到,获得积分10
8分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510739
求助须知:如何正确求助?哪些是违规求助? 3093572
关于积分的说明 9217389
捐赠科研通 2787802
什么是DOI,文献DOI怎么找? 1529946
邀请新用户注册赠送积分活动 710626
科研通“疑难数据库(出版商)”最低求助积分说明 706268