SHM System for Composite Material Based on Lamb Waves and Using Machine Learning on Hardware

兰姆波 复合数 计算机科学 结构健康监测 计算机硬件 声学 工程类 电气工程 物理 电信 表面波 算法
作者
Gracieth C. Batista,Carl‐Mikael Zetterling,Johnny Öberg,Osamu Saotome
出处
期刊:Sensors [MDPI AG]
卷期号:24 (23): 7817-7817 被引量:4
标识
DOI:10.3390/s24237817
摘要

There is extensive use of nondestructive test (NDT) inspections on aircraft, and many techniques nowadays exist to inspect failures and cracks in their structures. Moreover, NDT inspections are part of a more general structural health monitoring (SHM) system, where cutting-edge technologies are needed as powerful resources to achieve high performance. The high-performance aspects of SHM systems are response time, power consumption, and usability, which are difficult to achieve because of the system’s complexity. Then, it is even more challenging to develop a real-time low-power SHM system. Today, the ideal process is for structural health information extraction to be completed on the flight; however, the defects and damage are quantitatively made offline and on the ground, and sometimes, the respective procedure test is applied later on the ground, after the flight. For this reason, the present paper introduces an FPGA-based intelligent SHM system that processes Lamb wave signals using piezoelectric sensors to detect, classify, and locate damage in composite structures. The system employs machine learning (ML), specifically support vector machines (SVM), to classify damage while addressing outlier challenges with the Mahalanobis distance during the classification phase. To process the complex Lamb wave signals, the system incorporates well-known signal processing (DSP) techniques, including power spectrum density (PSD), wavelet transform, and Principal Component Analysis (PCA), for noise reduction, feature extraction, and data compression. These techniques enable the system to handle material anisotropy and mitigate the effects of edge reflections and mode conversions. Damage is quantitatively evaluated with classification accuracies of 96.25% for internal defects and 97.5% for external defects, with localization achieved by associating receiver positions with damage occurrence. This robust system is validated through experiments and demonstrates its potential for real-time applications in aerospace composite structures, addressing challenges related to material complexity, outliers, and scalable hardware implementation for larger sensor networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AAA应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
局外人发布了新的文献求助10
1秒前
1秒前
abinoo发布了新的文献求助10
2秒前
chenhouhan发布了新的文献求助10
2秒前
2秒前
dudu发布了新的文献求助10
2秒前
科研通AI6应助曹鹏喜采纳,获得10
2秒前
科研通AI2S应助精明人达采纳,获得10
3秒前
胖胖桑发布了新的文献求助10
3秒前
梁洲完成签到,获得积分10
3秒前
aimad发布了新的文献求助10
3秒前
4秒前
W-水完成签到,获得积分10
4秒前
睡着的鱼完成签到,获得积分10
4秒前
Jason完成签到,获得积分10
4秒前
隐形便当完成签到 ,获得积分10
6秒前
6秒前
avalanche发布了新的文献求助10
7秒前
朴实雨竹完成签到,获得积分10
7秒前
8秒前
在水一方应助饱满的小霜采纳,获得10
9秒前
不安含羞草完成签到,获得积分10
9秒前
天下无敌丑娃娃完成签到,获得积分10
9秒前
睡不醒的网完成签到,获得积分10
9秒前
9秒前
yyy发布了新的文献求助10
9秒前
完美世界应助iiiiiuy采纳,获得30
9秒前
9秒前
汉堡包应助hhh采纳,获得10
10秒前
粥粥应助蓝雨冰竹采纳,获得10
10秒前
10秒前
曹世纪发布了新的文献求助10
11秒前
Di完成签到,获得积分10
11秒前
11秒前
jopaul完成签到,获得积分10
11秒前
LX1005完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271