Intersection of network medicine and machine learning towards investigating the key biomarkers and pathways underlying amyotrophic lateral sclerosis: a systematic review

肌萎缩侧索硬化 计算机科学 疾病 系统回顾 精密医学 实施 生物网络 个性化医疗 交叉口(航空) 机器学习 人工智能 数据科学 医学 生物信息学 梅德林 病理 生物 工程类 航空航天工程 程序设计语言 生物化学
作者
Trishala Das,Harbinder Kaur,Pratibha Gour,Kartikay Prasad,Andrew M. Lynn,Amresh Prakash,Vijay Kumar
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:10
标识
DOI:10.1093/bib/bbac442
摘要

Abstract Background Network medicine is an emerging area of research that focuses on delving into the molecular complexity of the disease, leading to the discovery of network biomarkers and therapeutic target discovery. Amyotrophic lateral sclerosis (ALS) is a complicated rare disease with unknown pathogenesis and no available treatment. In ALS, network properties appear to be potential biomarkers that can be beneficial in disease-related applications when explored independently or in tandem with machine learning (ML) techniques. Objective This systematic literature review explores recent trends in network medicine and implementations of network-based ML algorithms in ALS. We aim to provide an overview of the identified primary studies and gather details on identifying the potential biomarkers and delineated pathways. Methods The current study consists of searching for and investigating primary studies from PubMed and Dimensions.ai, published between 2018 and 2022 that reported network medicine perspectives and the coupling of ML techniques. Each abstract and full-text study was individually evaluated, and the relevant studies were finally included in the review for discussion once they met the inclusion and exclusion criteria. Results We identified 109 eligible publications from primary studies representing this systematic review. The data coalesced into two themes: application of network science to identify disease modules and promising biomarkers in ALS, along with network-based ML approaches. Conclusion This systematic review gives an overview of the network medicine approaches and implementations of network-based ML algorithms in ALS to determine new disease genes, and identify critical pathways and therapeutic target discovery for personalized treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wblydz完成签到,获得积分10
3秒前
爱科研的光催人完成签到,获得积分10
4秒前
感动语蝶完成签到,获得积分10
6秒前
6秒前
朱光辉发布了新的文献求助10
6秒前
8秒前
11完成签到,获得积分10
9秒前
t铁核桃1985完成签到 ,获得积分10
11秒前
bkagyin应助苹果冷雁采纳,获得10
11秒前
细心夏槐完成签到 ,获得积分10
14秒前
科研通AI2S应助Ethan采纳,获得10
15秒前
完美的海秋发布了新的文献求助150
16秒前
火星上的灵雁完成签到,获得积分10
17秒前
整齐的初阳完成签到,获得积分10
19秒前
金平卢仙发布了新的文献求助10
19秒前
是莉莉娅完成签到,获得积分10
20秒前
雪白智宸完成签到 ,获得积分10
23秒前
情怀应助day_on采纳,获得10
23秒前
25秒前
顺心绮兰完成签到,获得积分10
25秒前
研友_ZeqAxZ完成签到,获得积分10
26秒前
26秒前
赘婿应助小蜗牛采纳,获得10
27秒前
28秒前
SciGPT应助ChristineShao采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
共享精神应助科研通管家采纳,获得10
29秒前
大模型应助科研通管家采纳,获得10
29秒前
Neil完成签到,获得积分10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
科目三应助科研通管家采纳,获得10
29秒前
超级访云应助科研通管家采纳,获得20
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
共享精神应助科研通管家采纳,获得10
30秒前
周周发布了新的文献求助10
30秒前
bgbgbg发布了新的文献求助10
32秒前
32秒前
超人不会飞完成签到,获得积分10
33秒前
烟花应助那小子好白采纳,获得10
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242426
求助须知:如何正确求助?哪些是违规求助? 2886811
关于积分的说明 8244819
捐赠科研通 2555315
什么是DOI,文献DOI怎么找? 1383432
科研通“疑难数据库(出版商)”最低求助积分说明 649713
邀请新用户注册赠送积分活动 625537