Multi-Variate and Multi-dimensional CFAR Detection of Breast Cancer

恒虚警率 乳腺摄影术 乳腺癌 假警报 计算机科学 数据集 人工智能 微波成像 随机变量 统计能力 探测器 模式识别(心理学) 癌症 医学 微波食品加热 数学 统计 随机变量 内科学 电信
作者
Azhar Albaaj,Yaser Norouzi,Gholamreza Moradi
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-2110232/v1
摘要

Abstract Breast cancer is the most common type of cancer in females. In many cases, the mortality rate can be drastically lowered if the disease is detected early. Due to its safety and lack of risk to the patient, microwave breast imaging is considered a potential replacement for mammography. This paper presents a breast cancer detection approach based on the Multi-Variate and Multi-Dimensional Constant False Alarm Rate (MVMD-CFAR) method. This method has several advantages over mammography using x-rays, including increased patient comfort and lower costs. On an open-source experimental database derived from the University of Manitoba Microwave Mammography Dataset UM-BMID, the performance of the (2D-CFAR) method is evaluated by examining the available data set for breast microwave sensing. We segregate infected and healthy samples and assessed the probability density function PDF for pictures of normal and malignant tissue. The third dimension of the algorithm is the image's color data, which comprises three variables (three colors). Initial testing show that the MVMD-CFAR detector is highly effective, with a detection probability of 97.4% and a false alarm probability of 10%. However, a few challenges must be overcome before this imaging technique can reach its full potential and be implemented in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光下的grass完成签到,获得积分20
刚刚
1秒前
fei发布了新的文献求助10
1秒前
Saunak完成签到,获得积分10
1秒前
2秒前
666666发布了新的文献求助30
2秒前
瑞瑞叮叮完成签到,获得积分10
2秒前
zho应助小小研究牲11采纳,获得10
3秒前
李健应助阳光下的grass采纳,获得10
4秒前
Frank发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
啦熊完成签到,获得积分10
7秒前
Felix发布了新的文献求助10
8秒前
8秒前
lyn发布了新的文献求助10
9秒前
fei完成签到,获得积分10
9秒前
卿筠完成签到,获得积分10
10秒前
11秒前
Shiku完成签到,获得积分10
12秒前
13秒前
彭于晏应助百里瓶窑采纳,获得10
13秒前
14秒前
美丽的安白完成签到,获得积分10
15秒前
静然完成签到,获得积分10
15秒前
Akim应助王十采纳,获得10
17秒前
17秒前
就晚安喽完成签到 ,获得积分10
17秒前
18秒前
19秒前
jue123完成签到,获得积分10
20秒前
20秒前
CipherSage应助lab采纳,获得10
21秒前
ysssbq完成签到,获得积分10
22秒前
于梦寒完成签到,获得积分10
22秒前
23秒前
爱睡午觉发布了新的文献求助10
23秒前
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247482
求助须知:如何正确求助?哪些是违规求助? 2890834
关于积分的说明 8264798
捐赠科研通 2559153
什么是DOI,文献DOI怎么找? 1387809
科研通“疑难数据库(出版商)”最低求助积分说明 650658
邀请新用户注册赠送积分活动 627384