A knowledge-enhanced graph-based temporal-spatial network for natural gas consumption prediction

天然气 图形 计算机科学 消费(社会学) 人工智能 理论计算机科学 工程类 社会学 废物管理 社会科学
作者
Jian Du,Jianqin Zheng,Yongtu Liang,Bohong Wang,Jiří Jaromír Klemeš,Xinyi Lu,Renfu Tu,Qi Liao,Ning Xu,Yuheng Xia
出处
期刊:Energy [Elsevier]
卷期号:263: 125976-125976 被引量:2
标识
DOI:10.1016/j.energy.2022.125976
摘要

The accurate prediction of natural gas consumption plays a central role in long-distance pipeline system production and transportation planning, and it becomes even more important during present political situation. The existing prediction methods for natural gas consumption barely consider spatial correlations and domain knowledge. As a result, the study proposes a novel deep learning prediction method (knowledge-enhanced graph-based temporal-spatial network, abbreviated to KE-GB-TSN) for predicting natural gas consumption by integrating domain knowledge into association graph construction and capturing temporal-spatial features via a hybrid deep learning network. This study first applies the domain knowledge that analyses the operation technique of the natural gas pipeline network and combines the historical data to establish an association graph. Subsequently, the historical data and association graphs are input to a hybrid deep learning network to predict natural gas consumption. The comparative experiments are conducted by taking real-world cases of natural gas consumption as examples. At last, a sensitivity analysis of different components combination is carried out to exhibit the significance of each component in the proposed model. The results prove that the proposed model is capable of achieving more accurate and efficient predicted results compared to the advanced models, such as decision trees and gated recurrent units. The Mean Absolute Relative Errors and Root Mean Squared Relative Errors gotten by the proposed model are less than 0.11 and 0.14 in all cases, indicating an improvement compared to previous works. Additionally, it is also suggested that domain knowledge and temporal-spatial correlations are crucial for the excellent performance of the prediction model. • A hybrid spatial-temporal network is proposed for predicting natural gas consumption. • The knowledge-enhanced association graph is established to represent spatial correlation patterns. • Verification is carried out on two different natural gas pipeline network cases. • Sensitivity analysis on the significance of different model components is conducted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
拾春完成签到,获得积分10
2秒前
2秒前
SYLH应助xmyang采纳,获得10
3秒前
向阳给向阳的求助进行了留言
4秒前
嘿嘿我去完成签到 ,获得积分10
5秒前
Kannan发布了新的文献求助10
7秒前
9秒前
11秒前
11秒前
完美世界应助了了采纳,获得30
11秒前
嘿嘿嘿发布了新的文献求助10
14秒前
20秒前
化尾鱼完成签到,获得积分10
21秒前
奈木扎完成签到,获得积分10
21秒前
22秒前
LIHANG发布了新的文献求助10
22秒前
22秒前
22秒前
迟大猫应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
坚定尔风完成签到,获得积分10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
迟大猫应助科研通管家采纳,获得10
24秒前
迟大猫应助科研通管家采纳,获得10
24秒前
迟大猫应助科研通管家采纳,获得10
24秒前
S77应助科研通管家采纳,获得10
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
关关过应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
小助应助科研通管家采纳,获得20
25秒前
迟大猫应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得30
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
上官若男应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589247
求助须知:如何正确求助?哪些是违规求助? 3157571
关于积分的说明 9516003
捐赠科研通 2860423
什么是DOI,文献DOI怎么找? 1571808
邀请新用户注册赠送积分活动 737505
科研通“疑难数据库(出版商)”最低求助积分说明 722293