骨骼化
计算机科学
分割
水准点(测量)
人工智能
管道(软件)
体素
光学(聚焦)
任务(项目管理)
点云
模式识别(心理学)
胸腔
代表(政治)
编码(集合论)
地图学
解剖
医学
政治学
地理
法学
程序设计语言
管理
集合(抽象数据类型)
经济
政治
物理
光学
作者
Liang Jin,Shixuan Gu,Donglai Wei,Jason Ken Adhinarta,Kaiming Kuang,Yongjie Zhang,Hanspeter Pfister,Bingbing Ni,Jiancheng Yang,Ming Li
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:1
标识
DOI:10.48550/arxiv.2210.09309
摘要
Automatic rib labeling and anatomical centerline extraction are common prerequisites for various clinical applications. Prior studies either use in-house datasets that are inaccessible to communities, or focus on rib segmentation that neglects the clinical significance of rib labeling. To address these issues, we extend our prior dataset (RibSeg) on the binary rib segmentation task to a comprehensive benchmark, named RibSeg v2, with 660 CT scans (15,466 individual ribs in total) and annotations manually inspected by experts for rib labeling and anatomical centerline extraction. Based on the RibSeg v2, we develop a pipeline including deep learning-based methods for rib labeling, and a skeletonization-based method for centerline extraction. To improve computational efficiency, we propose a sparse point cloud representation of CT scans and compare it with standard dense voxel grids. Moreover, we design and analyze evaluation metrics to address the key challenges of each task. Our dataset, code, and model are available online to facilitate open research at https://github.com/M3DV/RibSeg
科研通智能强力驱动
Strongly Powered by AbleSci AI