Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach

碰撞 计算机科学 风险分析(工程) 工程类 计算机安全 业务
作者
He Lan,Xiaoxue Ma,Weiliang Qiao,Wanyi Deng
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:230: 108934-108934 被引量:48
标识
DOI:10.1016/j.ress.2022.108934
摘要

Ship collision accidents often result in serious casualties and property losses. Predicting the severity of ship collisions is beneficial to improve maritime transport safety. Therefore, this study proposes a data-driven approach integrating association rule mining (ARM), complex network (CN), and random forest (RF) to explore the correlation among risk factors and determine the critical risk factors for predicting the severity of ship collision accidents. Specifically, ARM is integrated with CN to develop the risk interaction network of ship collisions and to identify the criticality of risk factors. Then, RF is employed to predict the severity of ship collisions, and determine the risk factors that have a critical effect on severity prediction. The results show that poor team communication is the most critical risk factor for predicting the severity of ship collisions. Moreover, the criticality of risk factors is different in the risk networks and prediction model. Results from this study would help relevant stakeholders to assess current risks and tailor safety strategies to reduce the severity of ship collisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任嘉嘉完成签到,获得积分10
1秒前
Orange应助谦让冰真采纳,获得30
1秒前
jiejie发布了新的文献求助30
1秒前
maox1aoxin应助drew采纳,获得30
2秒前
54489完成签到,获得积分10
2秒前
科研通AI2S应助阿巴阿巴采纳,获得10
3秒前
wswwsw发布了新的文献求助10
3秒前
Jasper应助chen采纳,获得30
3秒前
阔达的盼波完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
7秒前
小智发布了新的文献求助10
8秒前
万能图书馆应助nexus采纳,获得10
8秒前
吃土豆的番茄完成签到,获得积分10
9秒前
9秒前
嘿嘿发布了新的文献求助10
9秒前
zhangst发布了新的文献求助10
9秒前
w8816完成签到,获得积分10
10秒前
Hello应助袁寒烟采纳,获得10
10秒前
10秒前
susu完成签到,获得积分10
11秒前
jiejie完成签到,获得积分10
14秒前
小马甲应助550采纳,获得10
15秒前
Eugene完成签到,获得积分10
17秒前
唐擎汉完成签到,获得积分10
17秒前
苽峰完成签到,获得积分10
17秒前
666完成签到 ,获得积分10
18秒前
Jasper应助Eugene采纳,获得10
19秒前
lmd完成签到,获得积分10
21秒前
erjigao完成签到,获得积分10
21秒前
22秒前
Orange应助小智采纳,获得10
22秒前
123完成签到 ,获得积分10
23秒前
23秒前
23秒前
26秒前
mmyhn发布了新的文献求助10
26秒前
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244208
求助须知:如何正确求助?哪些是违规求助? 2887923
关于积分的说明 8250569
捐赠科研通 2556491
什么是DOI,文献DOI怎么找? 1384754
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 626000