Research on rapid detection of cross-scale defects in surface based on deep learning

规范化(社会学) 深度学习 修剪 人工智能 计算机科学 推论 比例(比率) 缩放比例 模式识别(心理学) 算法 材料科学 机器学习 数学 几何学 物理 量子力学 社会学 人类学 农学 生物
作者
Wei Chen,Bin Zou,Jinzhao Yang,Hewu Sun,Ting Lei,Xinfeng Wang,Chuanzhen Huang,Peng Yao,Lei Li
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:109: 345-358 被引量:8
标识
DOI:10.1016/j.jmapro.2023.12.033
摘要

The complex and diverse forms of surface defects in metal cutting, as well as their large scale span, present new challenges for deep learning algorithms. In addition, the existing defect detection models are generally characterized by high computational amount and complex structures, which is contrary to the high real-time performance and limited computing resources required in industrial applications. Based on this, this paper proposes a rapid detection method for cross-scale defects in surfaces based on deep learning. Firstly, a dataset of defect surfaces is collected and constructed through cutting experiments. Then, the experimental analysis reveals the insufficiency of the You Only Look Once version-5 s (YOLOv5s) network model for the detection of cross-scale defects on the surface. As a result, a RepVGG-Coordinate Attention-YOLOv5s (Rep-CA-YOLOv5s) network model, suitable for cross-scale defect detection, is proposed. This model optimizes the YOLOv5s network model from three perspectives, enhancing its ability to extract and fuse features for cross-scale defects. Finally, this paper investigates methods to improve detection speed while ensuring model accuracy. Two optimal Rep-CA-YOLOv5s sparse models are obtained through sparse training based on the γ scaling factor of the Batch Normalization (BN) layer and the filter weight, respectively. The relationship between detection accuracy, parameter quantity, and inference speed of these two sparse models under different pruning rates is explored. Experimental results indicate that the filter pruning method significantly improves model inference speed. At a 50 % pruning rate, optimal detection results can be achieved. Compared with the unpruning model, the pruned model reduced the inference speed by 55.67 %, while the mean Average Precision (mAP) only decreased by 0.1 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小杏仁采纳,获得10
1秒前
李健的粉丝团团长应助huan采纳,获得10
1秒前
华仔应助kyle采纳,获得10
1秒前
xx发布了新的文献求助10
2秒前
2秒前
科研通AI6应助落后的莫言采纳,获得40
2秒前
爱在深秋发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
滴滴发布了新的文献求助30
5秒前
5秒前
lkk完成签到,获得积分10
5秒前
6秒前
7秒前
yszm完成签到,获得积分10
7秒前
称心的绿竹完成签到,获得积分10
7秒前
默默发布了新的文献求助10
8秒前
单纯的采枫完成签到,获得积分10
8秒前
8秒前
超帅的不可完成签到 ,获得积分20
8秒前
Xj发布了新的文献求助10
8秒前
米酒汤圆发布了新的文献求助10
9秒前
小蘑菇应助小肆采纳,获得10
9秒前
风清扬应助聪明致远采纳,获得30
10秒前
11秒前
SciGPT应助怕孤单的泥猴桃采纳,获得10
11秒前
12秒前
852应助现在就出发采纳,获得10
12秒前
dn完成签到,获得积分20
12秒前
JC完成签到,获得积分10
12秒前
玫瑰少年发布了新的文献求助10
13秒前
CodeCraft应助动人的姝采纳,获得10
13秒前
niania发布了新的文献求助30
13秒前
13秒前
hzj完成签到 ,获得积分10
14秒前
果称关注了科研通微信公众号
14秒前
LaffiteElla完成签到,获得积分10
14秒前
14秒前
坦率的夏真完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Handbook of Industrial Inkjet Printing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264440
求助须知:如何正确求助?哪些是违规求助? 4424692
关于积分的说明 13773923
捐赠科研通 4299771
什么是DOI,文献DOI怎么找? 2359346
邀请新用户注册赠送积分活动 1355467
关于科研通互助平台的介绍 1316825