Research on rapid detection of cross-scale defects in surface based on deep learning

规范化(社会学) 深度学习 修剪 人工智能 计算机科学 推论 比例(比率) 缩放比例 模式识别(心理学) 算法 材料科学 机器学习 数学 几何学 物理 量子力学 社会学 人类学 农学 生物
作者
Wei Chen,Bin Zou,Jinzhao Yang,Hewu Sun,Ting Lei,Xinfeng Wang,Chuanzhen Huang,Peng Yao,Lei Li
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:109: 345-358 被引量:8
标识
DOI:10.1016/j.jmapro.2023.12.033
摘要

The complex and diverse forms of surface defects in metal cutting, as well as their large scale span, present new challenges for deep learning algorithms. In addition, the existing defect detection models are generally characterized by high computational amount and complex structures, which is contrary to the high real-time performance and limited computing resources required in industrial applications. Based on this, this paper proposes a rapid detection method for cross-scale defects in surfaces based on deep learning. Firstly, a dataset of defect surfaces is collected and constructed through cutting experiments. Then, the experimental analysis reveals the insufficiency of the You Only Look Once version-5 s (YOLOv5s) network model for the detection of cross-scale defects on the surface. As a result, a RepVGG-Coordinate Attention-YOLOv5s (Rep-CA-YOLOv5s) network model, suitable for cross-scale defect detection, is proposed. This model optimizes the YOLOv5s network model from three perspectives, enhancing its ability to extract and fuse features for cross-scale defects. Finally, this paper investigates methods to improve detection speed while ensuring model accuracy. Two optimal Rep-CA-YOLOv5s sparse models are obtained through sparse training based on the γ scaling factor of the Batch Normalization (BN) layer and the filter weight, respectively. The relationship between detection accuracy, parameter quantity, and inference speed of these two sparse models under different pruning rates is explored. Experimental results indicate that the filter pruning method significantly improves model inference speed. At a 50 % pruning rate, optimal detection results can be achieved. Compared with the unpruning model, the pruned model reduced the inference speed by 55.67 %, while the mean Average Precision (mAP) only decreased by 0.1 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到 ,获得积分10
刚刚
吉雪枫发布了新的文献求助10
刚刚
温婉的松鼠完成签到,获得积分10
1秒前
等你完成签到,获得积分10
2秒前
华北走地鸡完成签到,获得积分10
2秒前
辛夷发布了新的文献求助10
3秒前
小马完成签到,获得积分10
3秒前
4秒前
5秒前
十四应助lxy采纳,获得10
5秒前
失眠煎饼发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
专一的鸡翅完成签到 ,获得积分10
9秒前
za==应助guguhuhu采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
daheeeee发布了新的文献求助10
9秒前
10秒前
玉子莹发布了新的文献求助30
10秒前
11秒前
积极晓绿完成签到,获得积分10
11秒前
ssss完成签到,获得积分10
11秒前
清秀颜演完成签到,获得积分10
11秒前
pbj发布了新的文献求助10
11秒前
英俊的铭应助Keira采纳,获得10
11秒前
dow完成签到,获得积分10
11秒前
打打应助QQ采纳,获得10
11秒前
xiaoliu完成签到,获得积分10
12秒前
zhuyimin913发布了新的文献求助10
12秒前
贝塔发布了新的文献求助10
12秒前
fragile完成签到,获得积分10
12秒前
wangsiyuan完成签到 ,获得积分10
13秒前
研友_莫笑旋完成签到,获得积分10
13秒前
ming123ah完成签到,获得积分10
13秒前
Rondab应助玉七采纳,获得10
14秒前
14秒前
14秒前
奋斗冬萱完成签到,获得积分10
15秒前
zrs完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259