Research on rapid detection of cross-scale defects in surface based on deep learning

规范化(社会学) 深度学习 修剪 人工智能 计算机科学 推论 比例(比率) 缩放比例 模式识别(心理学) 算法 材料科学 机器学习 数学 几何学 物理 量子力学 社会学 人类学 农学 生物
作者
Wei Chen,Bin Zou,Jinzhao Yang,Hewu Sun,Ting Lei,Xinfeng Wang,Chuanzhen Huang,Peng Yao,Lei Li
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:109: 345-358 被引量:3
标识
DOI:10.1016/j.jmapro.2023.12.033
摘要

The complex and diverse forms of surface defects in metal cutting, as well as their large scale span, present new challenges for deep learning algorithms. In addition, the existing defect detection models are generally characterized by high computational amount and complex structures, which is contrary to the high real-time performance and limited computing resources required in industrial applications. Based on this, this paper proposes a rapid detection method for cross-scale defects in surfaces based on deep learning. Firstly, a dataset of defect surfaces is collected and constructed through cutting experiments. Then, the experimental analysis reveals the insufficiency of the You Only Look Once version-5 s (YOLOv5s) network model for the detection of cross-scale defects on the surface. As a result, a RepVGG-Coordinate Attention-YOLOv5s (Rep-CA-YOLOv5s) network model, suitable for cross-scale defect detection, is proposed. This model optimizes the YOLOv5s network model from three perspectives, enhancing its ability to extract and fuse features for cross-scale defects. Finally, this paper investigates methods to improve detection speed while ensuring model accuracy. Two optimal Rep-CA-YOLOv5s sparse models are obtained through sparse training based on the γ scaling factor of the Batch Normalization (BN) layer and the filter weight, respectively. The relationship between detection accuracy, parameter quantity, and inference speed of these two sparse models under different pruning rates is explored. Experimental results indicate that the filter pruning method significantly improves model inference speed. At a 50 % pruning rate, optimal detection results can be achieved. Compared with the unpruning model, the pruned model reduced the inference speed by 55.67 %, while the mean Average Precision (mAP) only decreased by 0.1 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
秀丽大凄发布了新的文献求助10
2秒前
lwroche完成签到,获得积分10
2秒前
2秒前
2秒前
啊啊啊啊发布了新的文献求助10
2秒前
3秒前
3秒前
panfan发布了新的文献求助10
6秒前
kk发布了新的文献求助10
6秒前
遥远的尧应助月半采纳,获得10
6秒前
友好的书包应助YY采纳,获得10
7秒前
金j完成签到,获得积分20
7秒前
高大绝义发布了新的文献求助10
7秒前
8秒前
Ava应助panfan采纳,获得10
10秒前
赘婿应助再努力一点点采纳,获得10
12秒前
12秒前
金j发布了新的文献求助30
13秒前
研友_nPoXoL发布了新的文献求助150
14秒前
科研通AI2S应助lmy采纳,获得10
15秒前
15秒前
yanmengzhen完成签到 ,获得积分10
16秒前
喝一口奶茶完成签到,获得积分20
16秒前
yecheng完成签到,获得积分10
17秒前
日富一日发布了新的文献求助10
17秒前
18秒前
18秒前
小刘一次只干一件事完成签到,获得积分20
19秒前
bkagyin应助WWW采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
南瓜难应助科研通管家采纳,获得30
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
20秒前
大模型应助科研通管家采纳,获得10
20秒前
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161364
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7896925
捐赠科研通 2471712
什么是DOI,文献DOI怎么找? 1316085
科研通“疑难数据库(出版商)”最低求助积分说明 631156
版权声明 602112