Whole-orbit radiomics: machine learning-based multi- and fused- region radiomics signatures for intravenous glucocorticoid response prediction in thyroid eye disease

磁共振成像 分割 计算机科学 人工智能 轨道(动力学) 医学 无线电技术 算法 核医学 机器学习 放射科 工程类 航空航天工程
作者
Haiyang Zhang,Mengda Jiang,Hoi Chi Chan,Huijie Zhang,Jiashuo Xu,Yuting Liu,Ling Zhu,Xiaofeng Tao,Duojin Xia,Lei Zhou,Yinwei Li,Jing Sun,Xuefei Song,Huifang Zhou,Xianqun Fan
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:22 (1): 56-56 被引量:13
标识
DOI:10.1186/s12967-023-04792-2
摘要

Abstract Background Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft tissues and construct a better prediction model. Methods In this retrospective study, we enrolled 127 patients with TED that received 4·5 g IVGC therapy and had complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all subjects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned structures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms. Results The support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0·961). The MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0·766, XGBoost on EOMs, or LR on OF) and conventional semiquantitative imaging model (highest AUC = 0·760, NaiveBayes). The application of different ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0·916, LR) led to different conclusions. Conclusions The WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be beneficial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selection of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奕_yinb完成签到 ,获得积分10
刚刚
星辰大海应助白开水采纳,获得10
刚刚
刚刚
麦麦完成签到,获得积分20
刚刚
123456qi发布了新的文献求助10
刚刚
1秒前
1秒前
小新应助烟波钓徒采纳,获得10
1秒前
1秒前
负责吃饭完成签到,获得积分10
1秒前
微渺完成签到,获得积分10
1秒前
睿力完成签到,获得积分10
1秒前
妮妮完成签到,获得积分10
2秒前
2224536完成签到,获得积分10
2秒前
天天快乐应助vivre223采纳,获得10
2秒前
shuiha发布了新的文献求助10
2秒前
2秒前
一一应助零度冰采纳,获得10
3秒前
鱼鱼鱼完成签到,获得积分10
3秒前
3秒前
3秒前
梅竹发布了新的文献求助10
4秒前
万能图书馆应助yiyi采纳,获得10
4秒前
lili完成签到,获得积分10
4秒前
5秒前
侏罗纪世界完成签到,获得积分10
5秒前
infe发布了新的文献求助10
5秒前
奕_yinb关注了科研通微信公众号
6秒前
LGS发布了新的文献求助10
6秒前
rrrrrrrrrrrrrrr完成签到,获得积分20
7秒前
smin发布了新的文献求助10
7秒前
7秒前
无花果应助往不随采纳,获得10
7秒前
8秒前
优雅含灵发布了新的文献求助10
8秒前
科研通AI6应助啊懂采纳,获得10
8秒前
9秒前
高亚楠发布了新的文献求助10
9秒前
xldongcn发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853