Real-time detection and localization method for weld seam of narrow butt joint based on semantic segmentation

计算机视觉 对接接头 计算机科学 人工智能 分割 焊接 稳健性(进化) 像素 结构光 机器人焊接 卡尔曼滤波器 机器人 材料科学 基因 化学 冶金 生物化学
作者
Xinyu Chen,Qihao Ma,Zhuzhen He,Xiaoyu Sun,Yan Ren
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 035205-035205 被引量:2
标识
DOI:10.1088/1361-6501/ad16b9
摘要

Abstract Structured light measurement is widely used in welding seam tracking because of its high precision and robustness. For the narrow butt joint, the positioning method by reconstructing the weld contour is not suitable for the welding of the narrow butt joint because it is difficult for the laser stripe to produce obvious deformation when projected to the weld. In this study, high-quality images with laser stripes and narrow butt joints are captured by the improved structured light vision sensor, which is equipped with an auxiliary light source. A two-step processing framework, including semantic segmentation and groove positioning, is raised to locate the feature point of the narrow butt joint. Firstly, we design the strip pooling ENet (SP-ENet), a real-time network specifically designed to accurately segment narrow weld images. Our proposed network outperforms other classical segmentation networks in terms of segmentation accuracy and proves to be highly suitable for the detection of narrow butt joint welds. Secondly, a combining method of random sample consensus (RANSAC) and iterative fitting to calculate the sub-pixel coordinates of weld feature points accurately. Finally, a trajectory smoothing model based on the Kalman filter is proposed to reduce the trajectory jitter. The above methods were tested on a self-built robotic welding experimental platform. Experimental results show that the proposed method can be used for real-time detection and positioning of narrow butt joints. The positioning trajectory is smooth, with most positioning errors less than 2 pixels. The mean tracking error reaches 0.207 mm, which can meet the practical welding requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赢学发布了新的文献求助10
刚刚
时尚丹寒完成签到 ,获得积分10
1秒前
1秒前
2秒前
大模型应助aaaabc采纳,获得10
4秒前
4秒前
科研小能手完成签到 ,获得积分10
4秒前
来日可追应助Lian采纳,获得10
4秒前
5秒前
勤恳迎梦完成签到,获得积分10
5秒前
momeak发布了新的文献求助10
5秒前
5秒前
炙热雅琴发布了新的文献求助10
5秒前
6秒前
桐桐应助旺仔采纳,获得10
6秒前
张小鱼完成签到 ,获得积分10
7秒前
wangdashuai发布了新的文献求助10
8秒前
8秒前
8秒前
竹萧发布了新的文献求助10
9秒前
JamesPei应助胖虎采纳,获得10
10秒前
10秒前
CM发布了新的文献求助10
10秒前
Sophia完成签到,获得积分10
11秒前
aero完成签到 ,获得积分10
12秒前
田...发布了新的文献求助10
12秒前
annnnnnd发布了新的文献求助10
13秒前
13秒前
李健应助皮半鬼采纳,获得10
13秒前
精神四射完成签到,获得积分20
13秒前
春祭发布了新的文献求助10
13秒前
科研通AI5应助狄若枫采纳,获得10
14秒前
nehsiac完成签到,获得积分10
14秒前
刘忙完成签到,获得积分10
16秒前
17秒前
刻苦的元菱应助Elinor采纳,获得10
17秒前
七七完成签到 ,获得积分10
17秒前
慕青应助春祭采纳,获得10
18秒前
小巧的柠檬完成签到,获得积分10
19秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3588902
求助须知:如何正确求助?哪些是违规求助? 3157433
关于积分的说明 9514805
捐赠科研通 2860164
什么是DOI,文献DOI怎么找? 1571708
邀请新用户注册赠送积分活动 737364
科研通“疑难数据库(出版商)”最低求助积分说明 722248