DFGait: Decomposition Fusion Representation Learning for Multimodal Gait Recognition

计算机科学 模式 模态(人机交互) 人工智能 生物识别 特征学习 冗余(工程) 正规化(语言学) 模式识别(心理学) 机器学习 社会科学 操作系统 社会学
作者
Jianbo Xiong,Shinan Zou,Jin Tang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 381-395 被引量:1
标识
DOI:10.1007/978-3-031-53311-2_28
摘要

Multimodal gait recognition aims to utilize various gait modalities for identity recognition. Previous methods have focused on designing complex fusion techniques. However, the heterogeneity between modalities has negatively impacted recognition tasks due to distributional differences and information redundancy. Inspired by this, we have proposed a novel feature decomposition fusion (DFGait) network, combining silhouette and skeleton data. The network learns modality-shared and modality-specific feature representations for both modalities and introduces inter-modality regularization loss and intra-modality regularization loss to encourage the preservation of common and unique information between modalities, reducing modality gaps and information redundancy. Furthermore, the representations mentioned above are embedded in their own space during learning, making the fusion process challenging. Therefore, we have proposed an adversarial modality alignment learning strategy, guiding the alignment of the two modality features through the confusion of the modality discriminator to achieve maximized modality information interaction. Finally, a separable fusion module is introduced to fuse the features of the two modalities, resulting in a comprehensive gait representation. Experimental results demonstrate that our DFGait achieves state-of-the-art performance on popular gait datasets, with rank-1 accuracy of 50.30% for Gait3D and 61.42% for GREW. The source code can be obtained from https://github.com/BoyeXiong/DFGait .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助spwan采纳,获得10
1秒前
ji发布了新的文献求助10
1秒前
大模型应助暴富采纳,获得10
1秒前
pepsisery完成签到,获得积分10
1秒前
傲娇如天发布了新的文献求助10
1秒前
涪城的涪发布了新的文献求助10
1秒前
寒来暑往发布了新的文献求助10
1秒前
Li完成签到,获得积分10
2秒前
852应助神勇的天问采纳,获得10
2秒前
2秒前
2秒前
znt发布了新的文献求助20
2秒前
柳行天完成签到 ,获得积分10
2秒前
2秒前
传奇3应助花海采纳,获得10
2秒前
芹菜发布了新的文献求助10
3秒前
ZZ完成签到,获得积分10
4秒前
球球完成签到,获得积分10
4秒前
songcy7发布了新的文献求助10
4秒前
于予鱼完成签到,获得积分10
4秒前
Akim应助心驰天外采纳,获得10
4秒前
星辰大海应助sunidea采纳,获得10
5秒前
XXY完成签到,获得积分10
5秒前
穷光蛋完成签到,获得积分10
5秒前
新手菜鸟发布了新的文献求助10
5秒前
ZZL完成签到,获得积分10
6秒前
晚若旧发布了新的文献求助10
6秒前
6秒前
6秒前
大头牌金枪鱼完成签到,获得积分10
6秒前
7秒前
JinQ完成签到,获得积分10
7秒前
7秒前
坚定冰海完成签到,获得积分10
8秒前
9秒前
KM比比发布了新的文献求助10
9秒前
Rainstorm27完成签到,获得积分10
9秒前
清清完成签到,获得积分20
9秒前
钦钦小豆包完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769