Optimizing the UV-Fenton Degradation of m-Cresol Wastewater: An Experimental and Artificial Intelligence Modeling Approach

废水 降级(电信) 人工神经网络 催化作用 环境科学 污水处理 基质(水族馆) 计算机科学 制浆造纸工业 化学 工艺工程 环境工程 机器学习 工程类 有机化学 电信 海洋学 地质学
作者
Jing Zhang,Xiaolong Yao,Yüe Zhao,Rengui Li,Xiaofei Chen,Haibo Jin,Huangzhao Wei,Lei Ma,Mingwei Zhao,Xiaowei Liu
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
标识
DOI:10.1021/acs.iecr.3c03847
摘要

Wastewater treatment, especially the efficient degradation of contaminants such as m-cresol, remains a pivotal challenge. This study investigates the application of artificial neural networks (ANN) in predicting total organic carbon (TOC) removal rates from m-cresol-contaminated wastewater by using the ultraviolet (UV)-Fenton oxidation process. Six key variables, namely, Fe2+ dosage, H2O2 dosage, catalyst quantity, reaction time, pH, and substrate concentration, were employed as inputs to the ANN model. Leveraging this multivariable input and a comprehensive data set, the ANN model projected a maximum TOC removal rate of 87.12%, validated by an efficiency of 86.26% achieved through experiments under the derived optimal conditions: Fe2+ dosage at 16.09 mg/L, H2O2 dosage at 1.40 mg/L, catalyst quantity at 0.11 g/L, reaction time of 29.80 min, initial pH of 3.66, and substrate concentration of 50 mg/L. Comparative analysis with other machine learning algorithms further revealed that the ANN model notably outperformed linear regression, support vector regression, and random forest in terms of precision. This work paves the way for resource-optimized experimental designs, fostering real-time wastewater monitoring and refining advanced oxidation process proficiency in industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12发布了新的文献求助10
1秒前
脑洞疼应助Hibiscus95采纳,获得10
2秒前
雨中的诗柳完成签到,获得积分10
2秒前
3秒前
流川封完成签到,获得积分10
4秒前
Lexi完成签到,获得积分10
5秒前
Gideon完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
赘婿应助yating采纳,获得10
7秒前
8秒前
9秒前
xudaniel发布了新的文献求助10
10秒前
G18960完成签到,获得积分10
11秒前
11秒前
3719left发布了新的文献求助10
12秒前
Angel发布了新的文献求助10
12秒前
xmn0717发布了新的文献求助10
14秒前
小鱼发布了新的文献求助10
15秒前
灵巧的导师完成签到,获得积分10
17秒前
Connor完成签到,获得积分10
18秒前
Hibiscus95发布了新的文献求助10
18秒前
Bugs完成签到,获得积分10
19秒前
cheng发布了新的文献求助10
19秒前
20秒前
爆米花应助2182265539采纳,获得10
21秒前
豆豆完成签到 ,获得积分10
22秒前
小闵发布了新的文献求助10
22秒前
啊怙纲完成签到 ,获得积分10
24秒前
科研通AI6.1应助小鱼采纳,获得10
25秒前
量子星尘发布了新的文献求助10
26秒前
28秒前
29秒前
小闵完成签到,获得积分10
29秒前
天天快乐应助现代雁桃采纳,获得10
30秒前
bin_zhang完成签到,获得积分10
30秒前
30秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812