RISTRA: Recursive Image Super-Resolution Transformer With Relativistic Assessment

计算机科学 变压器 算法 计算 图像分辨率 图像质量 人工智能 计算机工程 理论计算机科学 图像(数学) 电压 物理 量子力学
作者
Xiaoqiang Zhou,Huaibo Huang,Zilei Wang,Ran He
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6475-6487 被引量:4
标识
DOI:10.1109/tmm.2024.3352400
摘要

Many recent image restoration methods use Transformer as the backbone network and redesign the Transformer blocks. Differently, we explore the parameter-sharing mechanism over Transformer blocks and propose a dynamic recursive process to address the image super-resolution task efficiently. We firstly present a Recursive Image Super-resolution Transformer (RIST). By sharing the weights across different blocks, a plain forward process through the whole Transformer network can be folded into recursive iterations through a Transformer block. Such a parameter-sharing based recursive process can not only reduce the model size greatly, but also enable restoring images progressively. Features in the recursive process are modeled as a sequence and propagated with a temporal attention network. Besides, by analyzing the prediction variation across different iterations in RIST, we design a dynamic recursive process that can allocate adaptive computation costs to different samples. Specifically, a quality assessment network estimates the restoration quality and terminates the recursive process dynamically. We propose a relativistic learning strategy to simplify the objective from absolute image quality assessment to relativistic quality comparison. The proposed Recursive Image Super-resolution Transformer with Relativistic Assessment (RISTRA) reduces the model size greatly with the parameter-sharing mechanism, and achieves an instance-wise dynamic restoration process as well. Extensive experiments on several image super-resolution benchmarks show the superiority of our approach over state-of-the-art counterparts
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明天过后完成签到,获得积分10
刚刚
WTY发布了新的文献求助10
刚刚
Jasper应助吴世勋采纳,获得10
刚刚
R喻andom完成签到,获得积分10
1秒前
Quasimodomycin完成签到,获得积分10
2秒前
C/R关注了科研通微信公众号
2秒前
Gilana发布了新的文献求助10
2秒前
多宝发布了新的文献求助10
2秒前
少年锦时asd完成签到,获得积分10
2秒前
2秒前
Hearing胡完成签到,获得积分10
2秒前
小璐sunny发布了新的文献求助10
2秒前
Joy完成签到,获得积分10
2秒前
3秒前
zzj发布了新的文献求助30
3秒前
轻松的水之关注了科研通微信公众号
3秒前
4秒前
乔乔完成签到,获得积分10
4秒前
卡拉米完成签到,获得积分10
5秒前
ssds发布了新的文献求助10
6秒前
慕青应助科研小白采纳,获得10
7秒前
共享精神应助Superg采纳,获得10
8秒前
Orange应助WTY采纳,获得10
8秒前
Owen应助抗体小王采纳,获得10
8秒前
纯真的雁山完成签到,获得积分10
8秒前
chenjun7080完成签到,获得积分10
8秒前
zzj完成签到,获得积分20
11秒前
11秒前
zhy发布了新的文献求助10
12秒前
gengxw完成签到,获得积分10
12秒前
huangqqk完成签到,获得积分10
13秒前
14秒前
北极星完成签到,获得积分10
15秒前
15秒前
yzthk完成签到 ,获得积分10
15秒前
16秒前
111发布了新的文献求助10
16秒前
没有蛀牙完成签到 ,获得积分10
16秒前
ting完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152571
求助须知:如何正确求助?哪些是违规求助? 2803797
关于积分的说明 7855643
捐赠科研通 2461450
什么是DOI,文献DOI怎么找? 1310300
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782