Relation mapping based on higher-order graph convolutional network for entity alignment

计算机科学 关系(数据库) 图形 理论计算机科学 人工智能 数据挖掘
作者
Luheng Yang,Jianrui Chen,Zhihui Wang,Fanhua Shang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108009-108009 被引量:2
标识
DOI:10.1016/j.engappai.2024.108009
摘要

Recently, entity alignment for building knowledge graphs (KGs) has gathered increasing interest in the field of knowledge engineering. Existing models that are based on translation embeddings and graph convolutional network (GCN) further promote quality of entity embeddings, but most of them fail to pay attention to the influence of higher-order neighbors. However, higher-order information is strikingly central to perform entity alignment. Although the introduction of relationships between entities can further enhance the alignment, the existing methods have poor quality for relation embeddings. To overcome the issues, we design a novel Relation Mapping based on Higher-order Graph Convolutional Network for entity alignment, named RMHN. Specifically, a novel higher-order GCN is designed to aggregate higher-order information to considerably obtain entity embeddings. Additionally, we design a new relational mapping mechanism to obtain relation embeddings, which can drastically assist in the alignment process. To unlock the critical bottleneck that the current sampling strategies do not substantially improve the performance of entity alignment, we propose a new adversarial sampling strategy. Finally, experimental results on benchmark datasets exhibit the RMHN model surprisingly outperforms the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
RUI发布了新的文献求助10
1秒前
2秒前
若萱完成签到,获得积分10
2秒前
3秒前
烤冷面应助文艺水风采纳,获得20
3秒前
李大白完成签到 ,获得积分10
4秒前
wushuang完成签到,获得积分10
4秒前
ines发布了新的文献求助10
4秒前
Yuki发布了新的文献求助30
5秒前
Adzuki0812发布了新的文献求助10
5秒前
维尼熊完成签到 ,获得积分10
5秒前
学术羊发布了新的文献求助10
5秒前
5秒前
6秒前
Owen应助赵好好采纳,获得10
6秒前
幸运的羊完成签到,获得积分10
6秒前
7秒前
豆浆来点蒜泥完成签到,获得积分10
8秒前
zy发布了新的文献求助10
8秒前
老阎应助seven765采纳,获得30
8秒前
yaoccccchen完成签到,获得积分10
8秒前
深情安青应助说话请投币采纳,获得10
8秒前
蒸制发布了新的文献求助10
9秒前
青乔完成签到,获得积分10
9秒前
9秒前
田国兵发布了新的文献求助10
10秒前
Diane完成签到,获得积分10
10秒前
充电宝应助豆包采纳,获得10
10秒前
11秒前
11秒前
脑洞疼应助生动的沧海采纳,获得10
12秒前
12秒前
毒蝎King完成签到 ,获得积分10
13秒前
13秒前
陈勇发布了新的文献求助10
13秒前
14秒前
Hello应助teni采纳,获得10
14秒前
Ww发布了新的文献求助30
14秒前
15秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204858
求助须知:如何正确求助?哪些是违规求助? 4383758
关于积分的说明 13650861
捐赠科研通 4241754
什么是DOI,文献DOI怎么找? 2327024
邀请新用户注册赠送积分活动 1324769
关于科研通互助平台的介绍 1276983