Relation mapping based on higher-order graph convolutional network for entity alignment

计算机科学 关系(数据库) 图形 理论计算机科学 人工智能 数据挖掘
作者
Luheng Yang,Jianrui Chen,Zhihui Wang,Fanhua Shang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108009-108009 被引量:2
标识
DOI:10.1016/j.engappai.2024.108009
摘要

Recently, entity alignment for building knowledge graphs (KGs) has gathered increasing interest in the field of knowledge engineering. Existing models that are based on translation embeddings and graph convolutional network (GCN) further promote quality of entity embeddings, but most of them fail to pay attention to the influence of higher-order neighbors. However, higher-order information is strikingly central to perform entity alignment. Although the introduction of relationships between entities can further enhance the alignment, the existing methods have poor quality for relation embeddings. To overcome the issues, we design a novel Relation Mapping based on Higher-order Graph Convolutional Network for entity alignment, named RMHN. Specifically, a novel higher-order GCN is designed to aggregate higher-order information to considerably obtain entity embeddings. Additionally, we design a new relational mapping mechanism to obtain relation embeddings, which can drastically assist in the alignment process. To unlock the critical bottleneck that the current sampling strategies do not substantially improve the performance of entity alignment, we propose a new adversarial sampling strategy. Finally, experimental results on benchmark datasets exhibit the RMHN model surprisingly outperforms the state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
慢慢的地理人完成签到,获得积分10
1秒前
1秒前
完美世界应助小王采纳,获得10
2秒前
yang完成签到,获得积分10
2秒前
3秒前
bacteria发布了新的文献求助10
3秒前
田様应助脆皮小小酥采纳,获得10
3秒前
3秒前
阿呆不呆ning完成签到 ,获得积分10
3秒前
baige666发布了新的文献求助10
4秒前
沉默的倔驴应助VISIN采纳,获得10
5秒前
5秒前
zhilingou完成签到 ,获得积分10
5秒前
GG完成签到,获得积分10
6秒前
zozo完成签到,获得积分10
6秒前
6秒前
lntano发布了新的文献求助10
6秒前
曦谷发布了新的文献求助10
6秒前
hugo完成签到 ,获得积分10
7秒前
简单的凡儿完成签到,获得积分10
7秒前
bacteria完成签到,获得积分10
8秒前
8秒前
以123发布了新的文献求助10
8秒前
凌露发布了新的文献求助10
8秒前
blank发布了新的文献求助10
9秒前
ZGF发布了新的文献求助10
10秒前
11秒前
11秒前
天天快乐应助科研通管家采纳,获得10
12秒前
小猴子应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
Zx_1993应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得20
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588259
求助须知:如何正确求助?哪些是违规求助? 4671299
关于积分的说明 14786793
捐赠科研通 4624766
什么是DOI,文献DOI怎么找? 2531723
邀请新用户注册赠送积分活动 1500308
关于科研通互助平台的介绍 1468262