Relation mapping based on higher-order graph convolutional network for entity alignment

计算机科学 关系(数据库) 图形 理论计算机科学 人工智能 数据挖掘
作者
Luheng Yang,Jianrui Chen,Zhihui Wang,Fanhua Shang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108009-108009 被引量:2
标识
DOI:10.1016/j.engappai.2024.108009
摘要

Recently, entity alignment for building knowledge graphs (KGs) has gathered increasing interest in the field of knowledge engineering. Existing models that are based on translation embeddings and graph convolutional network (GCN) further promote quality of entity embeddings, but most of them fail to pay attention to the influence of higher-order neighbors. However, higher-order information is strikingly central to perform entity alignment. Although the introduction of relationships between entities can further enhance the alignment, the existing methods have poor quality for relation embeddings. To overcome the issues, we design a novel Relation Mapping based on Higher-order Graph Convolutional Network for entity alignment, named RMHN. Specifically, a novel higher-order GCN is designed to aggregate higher-order information to considerably obtain entity embeddings. Additionally, we design a new relational mapping mechanism to obtain relation embeddings, which can drastically assist in the alignment process. To unlock the critical bottleneck that the current sampling strategies do not substantially improve the performance of entity alignment, we propose a new adversarial sampling strategy. Finally, experimental results on benchmark datasets exhibit the RMHN model surprisingly outperforms the state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
面包圈完成签到 ,获得积分10
3秒前
得意黑完成签到,获得积分10
3秒前
米子哈完成签到,获得积分10
3秒前
WXX发布了新的文献求助10
3秒前
4秒前
猫橘汽水完成签到,获得积分10
5秒前
shy盼望sky发布了新的文献求助10
5秒前
Jasper应助wrwywzx采纳,获得30
5秒前
ccc完成签到,获得积分10
6秒前
寒冷紫发布了新的文献求助10
6秒前
7秒前
自己哭哭完成签到 ,获得积分10
7秒前
TOGETHERXYZ发布了新的文献求助10
7秒前
7秒前
科研通AI6应助米子哈采纳,获得10
8秒前
8秒前
周周发布了新的文献求助10
8秒前
8秒前
Qiao完成签到,获得积分10
9秒前
pb完成签到,获得积分10
9秒前
9秒前
10秒前
AidenZhang发布了新的文献求助10
10秒前
11秒前
dongdadada完成签到,获得积分10
11秒前
Joker完成签到,获得积分10
11秒前
李艾尔发布了新的文献求助10
11秒前
HH完成签到,获得积分10
12秒前
pb发布了新的文献求助10
12秒前
打一豆豆完成签到,获得积分10
13秒前
英俊的铭应助仿生躯壳采纳,获得10
13秒前
14秒前
11发布了新的文献求助10
14秒前
Joker发布了新的文献求助10
14秒前
猪猪hero发布了新的文献求助10
14秒前
14秒前
wanci应助河道蟹采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641853
求助须知:如何正确求助?哪些是违规求助? 4757522
关于积分的说明 15015246
捐赠科研通 4800349
什么是DOI,文献DOI怎么找? 2565983
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483788