Relation mapping based on higher-order graph convolutional network for entity alignment

计算机科学 关系(数据库) 图形 理论计算机科学 人工智能 数据挖掘
作者
Luheng Yang,Jianrui Chen,Zhihui Wang,Fanhua Shang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108009-108009 被引量:2
标识
DOI:10.1016/j.engappai.2024.108009
摘要

Recently, entity alignment for building knowledge graphs (KGs) has gathered increasing interest in the field of knowledge engineering. Existing models that are based on translation embeddings and graph convolutional network (GCN) further promote quality of entity embeddings, but most of them fail to pay attention to the influence of higher-order neighbors. However, higher-order information is strikingly central to perform entity alignment. Although the introduction of relationships between entities can further enhance the alignment, the existing methods have poor quality for relation embeddings. To overcome the issues, we design a novel Relation Mapping based on Higher-order Graph Convolutional Network for entity alignment, named RMHN. Specifically, a novel higher-order GCN is designed to aggregate higher-order information to considerably obtain entity embeddings. Additionally, we design a new relational mapping mechanism to obtain relation embeddings, which can drastically assist in the alignment process. To unlock the critical bottleneck that the current sampling strategies do not substantially improve the performance of entity alignment, we propose a new adversarial sampling strategy. Finally, experimental results on benchmark datasets exhibit the RMHN model surprisingly outperforms the state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘泉树发布了新的文献求助10
1秒前
研友_8QyXr8发布了新的文献求助10
1秒前
YE完成签到,获得积分10
2秒前
四火完成签到 ,获得积分10
3秒前
4秒前
朱羊羊完成签到,获得积分10
4秒前
英俊的铭应助秦婉琦采纳,获得10
5秒前
英姑应助双马尾小男生2采纳,获得10
5秒前
7秒前
vivi完成签到 ,获得积分10
8秒前
8秒前
zhu完成签到,获得积分10
10秒前
10秒前
10秒前
CipherSage应助卷心菜采纳,获得10
11秒前
11秒前
彩色的平露完成签到,获得积分20
11秒前
ZJL发布了新的文献求助10
11秒前
阿白先生完成签到,获得积分10
12秒前
13秒前
ary完成签到 ,获得积分10
13秒前
JamesPei应助双马尾小男生2采纳,获得10
14秒前
15秒前
共享精神应助聂雪娇采纳,获得10
15秒前
15秒前
姜积木完成签到 ,获得积分10
15秒前
15秒前
一棵草完成签到,获得积分10
16秒前
从从发布了新的文献求助10
17秒前
seedcui发布了新的文献求助50
19秒前
开心的谷兰完成签到,获得积分10
20秒前
wu发布了新的文献求助30
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
心灵美剑封完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536747
求助须知:如何正确求助?哪些是违规求助? 4624321
关于积分的说明 14591612
捐赠科研通 4564876
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480690
关于科研通互助平台的介绍 1451972