Relation mapping based on higher-order graph convolutional network for entity alignment

计算机科学 关系(数据库) 图形 理论计算机科学 人工智能 数据挖掘
作者
Luheng Yang,Jianrui Chen,Zhihui Wang,Fanhua Shang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108009-108009 被引量:2
标识
DOI:10.1016/j.engappai.2024.108009
摘要

Recently, entity alignment for building knowledge graphs (KGs) has gathered increasing interest in the field of knowledge engineering. Existing models that are based on translation embeddings and graph convolutional network (GCN) further promote quality of entity embeddings, but most of them fail to pay attention to the influence of higher-order neighbors. However, higher-order information is strikingly central to perform entity alignment. Although the introduction of relationships between entities can further enhance the alignment, the existing methods have poor quality for relation embeddings. To overcome the issues, we design a novel Relation Mapping based on Higher-order Graph Convolutional Network for entity alignment, named RMHN. Specifically, a novel higher-order GCN is designed to aggregate higher-order information to considerably obtain entity embeddings. Additionally, we design a new relational mapping mechanism to obtain relation embeddings, which can drastically assist in the alignment process. To unlock the critical bottleneck that the current sampling strategies do not substantially improve the performance of entity alignment, we propose a new adversarial sampling strategy. Finally, experimental results on benchmark datasets exhibit the RMHN model surprisingly outperforms the state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gx完成签到,获得积分20
2秒前
2秒前
2421154880发布了新的文献求助10
2秒前
2秒前
镜中月完成签到,获得积分10
3秒前
3秒前
青栀发布了新的文献求助10
3秒前
pluto应助苛帅采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
张伯伦发布了新的文献求助10
4秒前
4秒前
舒心初晴发布了新的文献求助10
4秒前
5秒前
5秒前
王丽雅发布了新的文献求助10
5秒前
6秒前
lxl发布了新的文献求助10
7秒前
7秒前
李健应助工藤新一采纳,获得10
7秒前
7秒前
8秒前
FashionBoy应助科研爱好者采纳,获得10
9秒前
9秒前
9秒前
金肆发布了新的文献求助10
10秒前
lifeng完成签到 ,获得积分10
10秒前
10秒前
Marciu33完成签到,获得积分10
11秒前
Jasper应助ZZH采纳,获得10
11秒前
冲破天际发布了新的文献求助150
13秒前
hui完成签到,获得积分10
13秒前
彭于晏应助跳跳采纳,获得20
13秒前
14秒前
zz发布了新的文献求助10
14秒前
14秒前
15秒前
eccentric完成签到,获得积分10
16秒前
打打应助危险份子采纳,获得10
16秒前
神勇的荟完成签到 ,获得积分10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186