指数稳定性
半群
无量纲量
消散
数学
数学分析
指数衰减
物理
指数增长
多项式的
指数函数
机械
量子力学
非线性系统
作者
Victor R. Cabanillas,Teófanes Quispe Méndez,A. J. A. Ramos
出处
期刊:Asymptotic Analysis
[IOS Press]
日期:2023-11-28
卷期号:137 (1-2): 123-151
被引量:2
摘要
This article deals with the asymptotic behavior of a mathematical model for laminated beams with Kelvin–Voigt dissipation acting on the equations of transverse displacement and dimensionless slip. We prove that the evolution semigroup is exponentially stable if the damping is effective in the two equations of the model. Otherwise, we prove that the semigroup is polynomially stable and find the optimal decay rate when damping is effective only in the slip equation. Our stability approach is based on the Gearhart–Prüss–Huang Theorem, which characterizes exponential stability, while the polynomial decay rate is obtained using the Borichev and Tomilov Theorem.
科研通智能强力驱动
Strongly Powered by AbleSci AI