质子交换膜燃料电池
材料科学
催化作用
电催化剂
纳米颗粒
电化学
化学工程
纳米技术
无机化学
化学
电极
物理化学
有机化学
工程类
作者
Lü Shaojie,Yiping Hu,Fanjie Xia,Shuo Yang,Xiaofei Hu,Yu Zhou,Dongsheng Ma,Wenjing Zhang,Jing Li,Jinsong Wu,Dewei Rao,Qin Yue
出处
期刊:Small
[Wiley]
日期:2023-11-27
卷期号:20 (15)
标识
DOI:10.1002/smll.202305296
摘要
Abstract Developing a highly active, durable, and low‐platinum‐based electrocatalyst for the cathodic oxygen reduction reaction (ORR) is for breaking the bottleneck of large‐scale applications of proton exchange membrane fuel cells (PEMFCs). Herein, ultrafine PtZn intermetallic nanoparticles with low Pt‐loading and trace germanium (Ge) involvement confined in the nitrogen‐doped porous carbon (Ge‐L 10 ‐PtZn@N‐C) are reported. The Ge‐L 10 ‐PtZn@N‐C exhibit superior ORR activity with a mass activity of 3.04 A mg −1 Pt and specific activity of 4.69 mA cm –2 , ≈12.2‐ and 10.2‐times improvement compared to the commercial Pt/C (20%) at 0.90 V in 0.1 m KOH. The cathodic catalyst Ge‐L 10 ‐PtZn@N‐C assembled in the PEMFC shows encouraging peak power densities of 316.5 (at 0.86 V) and 417.2 mW cm –2 (at 0.91 V) in alkaline and acidic fuel‐cell, respectively. The combination of experiment and density functional theory calculations (DFT) results robustly reveal that the participation of trace Ge can not only trigger a “growth site locking effect” to effectively inhibit nanoparticle growth, bring miniature nanoparticles, enhance dispersion uniformity, and achieve the exposure of the more electrochemical active site, but also effectively modulates the electronic structure, hence optimizing the adsorption/desorption of the oxygen intermediates.
科研通智能强力驱动
Strongly Powered by AbleSci AI