Predicting Soccer Players’ Fitness Status Through a Machine-Learning Approach

机器学习 人工智能 计算机科学 比赛比赛 物理医学与康复 物理疗法 医学
作者
Mauro Mandorino,Jo Clubb,Mathieu Lacome
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:19 (5): 443-453 被引量:3
标识
DOI:10.1123/ijspp.2023-0444
摘要

Purpose: The study had 3 purposes: (1) to develop an index using machine-learning techniques to predict the fitness status of soccer players, (2) to explore the index’s validity and its relationship with a submaximal run test (SMFT), and (3) to analyze the impact of weekly training load on the index and SMFT outcomes. Methods: The study involved 50 players from an Italian professional soccer club. External and internal loads were collected during training sessions. Various machine-learning algorithms were assessed for their ability to predict heart-rate responses during the training drills based on external load data. The fitness index, calculated as the difference between actual and predicted heart rates, was correlated with SMFT outcomes. Results: Random forest regression (mean absolute error = 3.8 [0.05]) outperformed the other machine-learning algorithms (extreme gradient boosting and linear regression). Average speed, minutes from the start of the training session, and the work:rest ratio were identified as the most important features. The fitness index displayed a very large correlation ( r = .70) with SMFT outcomes, with the highest result observed during possession games and physical conditioning exercises. The study revealed that heart-rate responses from SMFT and the fitness index could diverge throughout the season, suggesting different aspects of fitness. Conclusions: This study introduces an “invisible monitoring” approach to assess soccer player fitness in the training environment. The developed fitness index, in conjunction with traditional fitness tests, provides a comprehensive understanding of player readiness. This research paves the way for practical applications in soccer, enabling personalized training adjustments and injury prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
dong完成签到,获得积分10
1秒前
2秒前
科研通AI5应助刘芸芸采纳,获得10
3秒前
baijiayi完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
song发布了新的文献求助10
4秒前
LEMON发布了新的文献求助10
5秒前
5秒前
Aha完成签到 ,获得积分10
5秒前
5秒前
乐乐应助狂野世立采纳,获得10
6秒前
yzz完成签到,获得积分10
6秒前
6秒前
SYLH应助曾水采纳,获得10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
陈佳琪发布了新的文献求助30
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
pluto应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
单复天完成签到,获得积分10
8秒前
8秒前
jgy应助科研通管家采纳,获得30
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
shouyu29应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762