Predicting Soccer Players’ Fitness Status Through a Machine-Learning Approach

机器学习 人工智能 计算机科学 比赛比赛 物理医学与康复 物理疗法 医学
作者
Mauro Mandorino,Jo Clubb,Mathieu Lacome
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:19 (5): 443-453 被引量:3
标识
DOI:10.1123/ijspp.2023-0444
摘要

Purpose: The study had 3 purposes: (1) to develop an index using machine-learning techniques to predict the fitness status of soccer players, (2) to explore the index’s validity and its relationship with a submaximal run test (SMFT), and (3) to analyze the impact of weekly training load on the index and SMFT outcomes. Methods: The study involved 50 players from an Italian professional soccer club. External and internal loads were collected during training sessions. Various machine-learning algorithms were assessed for their ability to predict heart-rate responses during the training drills based on external load data. The fitness index, calculated as the difference between actual and predicted heart rates, was correlated with SMFT outcomes. Results: Random forest regression (mean absolute error = 3.8 [0.05]) outperformed the other machine-learning algorithms (extreme gradient boosting and linear regression). Average speed, minutes from the start of the training session, and the work:rest ratio were identified as the most important features. The fitness index displayed a very large correlation ( r = .70) with SMFT outcomes, with the highest result observed during possession games and physical conditioning exercises. The study revealed that heart-rate responses from SMFT and the fitness index could diverge throughout the season, suggesting different aspects of fitness. Conclusions: This study introduces an “invisible monitoring” approach to assess soccer player fitness in the training environment. The developed fitness index, in conjunction with traditional fitness tests, provides a comprehensive understanding of player readiness. This research paves the way for practical applications in soccer, enabling personalized training adjustments and injury prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦问旋发布了新的文献求助10
刚刚
刚刚
干净的时光应助魏1122采纳,获得10
1秒前
大气的远望完成签到,获得积分10
1秒前
布丁完成签到,获得积分10
2秒前
2秒前
勾勾1991发布了新的文献求助10
2秒前
3秒前
初a发布了新的文献求助30
3秒前
li完成签到,获得积分10
4秒前
4秒前
脑洞疼应助hhhh采纳,获得10
5秒前
Pureasy完成签到,获得积分10
5秒前
筱筱完成签到,获得积分10
6秒前
9way完成签到 ,获得积分10
7秒前
7秒前
Weining发布了新的文献求助10
8秒前
张阳阳发布了新的文献求助10
8秒前
8秒前
何休槊发布了新的文献求助10
9秒前
9秒前
aldblm完成签到,获得积分10
10秒前
10秒前
11秒前
穆仰应助小王采纳,获得10
11秒前
12秒前
zfh1341完成签到,获得积分10
12秒前
西柚完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
一棵草发布了新的文献求助10
13秒前
烟花应助陈年人少熬夜采纳,获得10
13秒前
鲲鹏发布了新的文献求助10
14秒前
zfh1341发布了新的文献求助10
14秒前
15秒前
yefeng发布了新的文献求助10
15秒前
15秒前
方格完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156221
求助须知:如何正确求助?哪些是违规求助? 2807720
关于积分的说明 7874164
捐赠科研通 2465918
什么是DOI,文献DOI怎么找? 1312504
科研通“疑难数据库(出版商)”最低求助积分说明 630154
版权声明 601912