Predicting Soccer Players’ Fitness Status Through a Machine-Learning Approach

机器学习 人工智能 计算机科学 比赛比赛 物理医学与康复 物理疗法 医学
作者
Mauro Mandorino,Jo Clubb,Mathieu Lacome
出处
期刊:International Journal of Sports Physiology and Performance [Human Kinetics]
卷期号:19 (5): 443-453 被引量:5
标识
DOI:10.1123/ijspp.2023-0444
摘要

Purpose: The study had 3 purposes: (1) to develop an index using machine-learning techniques to predict the fitness status of soccer players, (2) to explore the index’s validity and its relationship with a submaximal run test (SMFT), and (3) to analyze the impact of weekly training load on the index and SMFT outcomes. Methods: The study involved 50 players from an Italian professional soccer club. External and internal loads were collected during training sessions. Various machine-learning algorithms were assessed for their ability to predict heart-rate responses during the training drills based on external load data. The fitness index, calculated as the difference between actual and predicted heart rates, was correlated with SMFT outcomes. Results: Random forest regression (mean absolute error = 3.8 [0.05]) outperformed the other machine-learning algorithms (extreme gradient boosting and linear regression). Average speed, minutes from the start of the training session, and the work:rest ratio were identified as the most important features. The fitness index displayed a very large correlation ( r = .70) with SMFT outcomes, with the highest result observed during possession games and physical conditioning exercises. The study revealed that heart-rate responses from SMFT and the fitness index could diverge throughout the season, suggesting different aspects of fitness. Conclusions: This study introduces an “invisible monitoring” approach to assess soccer player fitness in the training environment. The developed fitness index, in conjunction with traditional fitness tests, provides a comprehensive understanding of player readiness. This research paves the way for practical applications in soccer, enabling personalized training adjustments and injury prevention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负数完成签到,获得积分10
2秒前
快到碗里来完成签到,获得积分10
3秒前
esdese完成签到,获得积分10
4秒前
5秒前
大狒狒发布了新的文献求助10
11秒前
空白完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
张昌炜完成签到 ,获得积分10
18秒前
大狒狒完成签到,获得积分10
18秒前
jscr完成签到,获得积分10
19秒前
桂花载酒少年游完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
如意的玉米完成签到,获得积分10
21秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
科研小白完成签到,获得积分20
24秒前
Ava应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
蓉蓉完成签到 ,获得积分10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
sunyz应助科研通管家采纳,获得10
25秒前
求助人员应助科研通管家采纳,获得30
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
25秒前
学术小白完成签到,获得积分10
27秒前
高大的鸽子完成签到 ,获得积分10
28秒前
31秒前
好运设计完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
温婉的香氛完成签到 ,获得积分10
33秒前
esdese发布了新的文献求助10
38秒前
超越俗尘完成签到,获得积分10
38秒前
明时完成签到,获得积分10
39秒前
CMUSK完成签到,获得积分10
41秒前
小核桃完成签到 ,获得积分10
44秒前
勤恳的嚓茶完成签到,获得积分10
44秒前
46秒前
Freddy完成签到 ,获得积分10
46秒前
LIKUN完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986