间充质干细胞
干细胞
球体
材料科学
细胞生物学
骨髓
细胞
脂肪组织
生物医学工程
纳米技术
化学
生物
细胞培养
免疫学
医学
生物化学
遗传学
作者
Min Hao,Wenhan Wang,Anil Kumar,Wan Hairul Anuar Kamaruddin,Syafiqah Saidin,Nik Ahmad Nizam Nik Malek,Jérôme P. Claverie,Hong Liu
摘要
Abstract The low survival rate and poor differentiation efficiency of stem cells, as well as the insufficient integration of implanted stem cells, limit the regeneration of bone defects. Here, we have developed magnetic ferroferric oxide‐hydroxyapatite‐polydopamine (Fe 3 O 4 ‐HAp‐PDA) nanobelts to assemble mesenchymal stem cells (MSCs) into a three‐dimensional hybrid spheroid for patterning bone tissue. These nanobelts, which are featured by their high‐aspect ratio and contain Fe 3 O 4 nanospheres with a PDA coating, can be manipulated by a magnetic field and foster enhanced cell‐nanobelt interactions. This strategy has been demonstrated to be effective for both bone marrow mesenchymal stem cells and adipose‐derived mesenchymal stem cells, enabling remote manipulation of stem cell spheroids and efficient spheroid fusion, which in turn accelerates osteogenic differentiation. Consequently, this methodology serves as an efficient and general tool for bone tissue printing and can potentially overcome the low survival rate and poor differentiation efficiency of stem cells, as well as mismatched interface fusion issues.
科研通智能强力驱动
Strongly Powered by AbleSci AI