A Scattered Liquid Component Analysis Approach Based on Spectral Visual Encoding and Fusion

生物系统 可视化 计算机科学 融合 成分分析 组分(热力学) 材料科学 光学 人工智能 物理 语言学 生物 热力学 哲学
作者
Tianhao Liu,Can Zhou,Chenyu Fang,Hongqiu Zhu,Yonggang Li,Jiali Wu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (3): 3072-3083 被引量:1
标识
DOI:10.1109/jsen.2023.3336797
摘要

In recent decades, spectral analysis has become a key research field to determine product components. Ion concentrations in metallurgical liquid are crucial component parameters for guiding the stable process operation in zinc hydrometallurgy. Its rapid and accurate analysis plays a critical role in industrial informatization. However, on the one hand, due to the complex physical and chemical properties of metallurgical liquid, the suspended solid particles (SSPs) in the liquid cause incident light scattering, which violates Lambert–Beer's law and results in a considerable determination deviation in the traditional methods. On the other hand, optical-based particle modeling relies on precise optical parameters and complex calculation, which is a costly endeavor. To get around these issues, a scattered liquid component analysis method based on spectral visual encoding (SVE) and fusion is proposed. It unifies the traditional three spectrum analysis steps and provides a new perspective on spectral variation characterization. First, a multispectrum acquisition system based on region scanning was developed to mitigate the effects of SSP sensitivity. Second, a spectral visualization framework based on image encoding is established, and the dynamics variation of spectral curve shape and absorbance amplitude is characterized. Third, a multiple-channel mechanism is designed, which enables the proposed method to extract and fuse feature information of different encoded images. The experimental results proved that the proposed method yields higher determination accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
4秒前
扎根发布了新的文献求助10
5秒前
杨俊锋完成签到,获得积分20
5秒前
科研通AI5应助科研虫采纳,获得10
6秒前
快乐吗猪完成签到 ,获得积分10
7秒前
yjf完成签到,获得积分10
7秒前
7秒前
8秒前
深情不弱完成签到 ,获得积分10
8秒前
10秒前
香蕉觅云应助hhhhh采纳,获得10
10秒前
11秒前
小酥饼完成签到,获得积分10
11秒前
13秒前
刚刚好完成签到,获得积分10
13秒前
木子应助表演采纳,获得50
14秒前
dll完成签到 ,获得积分10
14秒前
炙热冰夏发布了新的文献求助10
15秒前
纯情的远山完成签到,获得积分10
17秒前
zhangyidian应助大气绮露采纳,获得10
19秒前
21秒前
21秒前
小马甲应助萤火采纳,获得10
24秒前
dyy发布了新的文献求助10
25秒前
研友_gnv61n完成签到,获得积分0
25秒前
xcf6653发布了新的文献求助10
25秒前
hhhhh发布了新的文献求助10
26秒前
炙热冰夏完成签到,获得积分10
30秒前
长青关注了科研通微信公众号
31秒前
李爱国应助Zx采纳,获得10
32秒前
思源应助慕哈哈哈采纳,获得10
33秒前
33秒前
会厌完成签到 ,获得积分10
33秒前
34秒前
DLL完成签到 ,获得积分10
34秒前
35秒前
打打应助hhhhh采纳,获得10
37秒前
萤火发布了新的文献求助10
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672470
求助须知:如何正确求助?哪些是违规求助? 3228781
关于积分的说明 9781944
捐赠科研通 2939186
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174