KSLD-TNet: Key Sample Location and Distillation Transformer Network for Multi-Step Ahead Prediction in Industrial Processes

变压器 计算机科学 蒸馏 特征提取 编码器 人工智能 数据挖掘 钥匙(锁) 机器学习 工程类 化学 计算机安全 有机化学 电压 电气工程 操作系统
作者
Diju Liu,Yalin Wang,Chenliang Liu,Xiaofeng Yuan,Kai Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (2): 1792-1802 被引量:1
标识
DOI:10.1109/jsen.2023.3336789
摘要

The multi-step ahead prediction of crucial quality indicators is the cornerstone for optimizing and controlling industrial processes. The accurate multi-step ahead prediction over long prediction horizons holds great potential for improving production performance in industrial processes. However, extracting historical features presents a significant obstacle in achieving this objective. Recent advancements have demonstrated that transformer networks offer a promising technical solution to this challenge. Nevertheless, the lack of a sample simplification mechanism makes deep feature extraction difficult. It requires a lot of computational costs, which makes the traditional transformer network less applicable in industrial processes. To explore strategies to overcome these obstacles and enhance the suitability of transformer networks for effective multi-step ahead prediction, this paper proposes a novel key sample location and distillation transformer network (KSLD-TNet). Specifically, it first locates key samples with strong interactions using the attention score matrix. Then, non-key samples are filtered out layer by layer in the KSLD-TNet encoder-decoder structure. In this way, the number of input samples for each layer can be lowered exponentially, reducing the difficulty and calculation amount of deep feature extraction significantly. It is worth noting that this paper also designs an information storage structure to avoid information loss during the sample distillation process. Two industrial process datasets are utilized to construct extensive experiments to demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZXW完成签到,获得积分10
刚刚
阿巴阿巴发布了新的文献求助10
刚刚
嘟哈克完成签到,获得积分10
刚刚
飞飞完成签到,获得积分10
1秒前
1秒前
平淡幻枫发布了新的文献求助10
1秒前
NexusExplorer应助mcqm采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
2秒前
young应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
快乐的小叮当完成签到,获得积分10
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
愉快之槐应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
young应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
CAOHOU应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
科研通AI2S应助WQY采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
徐徐完成签到,获得积分10
3秒前
CyrusSo524应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得30
3秒前
1sunpf完成签到,获得积分10
3秒前
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051