KSLD-TNet: Key Sample Location and Distillation Transformer Network for Multi-Step Ahead Prediction in Industrial Processes

变压器 计算机科学 蒸馏 特征提取 编码器 人工智能 数据挖掘 钥匙(锁) 机器学习 工程类 计算机安全 操作系统 电气工程 电压 有机化学 化学
作者
Diju Liu,Yalin Wang,Chenliang Liu,Xiaofeng Yuan,Kai Wang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 1792-1802 被引量:1
标识
DOI:10.1109/jsen.2023.3336789
摘要

The multi-step ahead prediction of crucial quality indicators is the cornerstone for optimizing and controlling industrial processes. The accurate multi-step ahead prediction over long prediction horizons holds great potential for improving production performance in industrial processes. However, extracting historical features presents a significant obstacle in achieving this objective. Recent advancements have demonstrated that transformer networks offer a promising technical solution to this challenge. Nevertheless, the lack of a sample simplification mechanism makes deep feature extraction difficult. It requires a lot of computational costs, which makes the traditional transformer network less applicable in industrial processes. To explore strategies to overcome these obstacles and enhance the suitability of transformer networks for effective multi-step ahead prediction, this paper proposes a novel key sample location and distillation transformer network (KSLD-TNet). Specifically, it first locates key samples with strong interactions using the attention score matrix. Then, non-key samples are filtered out layer by layer in the KSLD-TNet encoder-decoder structure. In this way, the number of input samples for each layer can be lowered exponentially, reducing the difficulty and calculation amount of deep feature extraction significantly. It is worth noting that this paper also designs an information storage structure to avoid information loss during the sample distillation process. Two industrial process datasets are utilized to construct extensive experiments to demonstrate the effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助yyy采纳,获得10
1秒前
积极向卉给积极向卉的求助进行了留言
2秒前
脑洞疼应助专注鼠标采纳,获得10
2秒前
2秒前
xll发布了新的文献求助10
3秒前
小李发布了新的文献求助10
3秒前
li发布了新的文献求助10
4秒前
jiu完成签到,获得积分10
4秒前
今后应助Ox1dant采纳,获得10
4秒前
科研通AI2S应助Rason采纳,获得10
5秒前
5秒前
大猪完成签到 ,获得积分10
5秒前
5秒前
7秒前
7秒前
7秒前
7秒前
wwww发布了新的文献求助10
7秒前
8秒前
星辰大海应助虾米吃螃蟹采纳,获得10
8秒前
NexusExplorer应助朴实的无极采纳,获得10
9秒前
谷雨应助努力的咩咩采纳,获得10
9秒前
9秒前
Andy发布了新的文献求助10
11秒前
11秒前
bkagyin应助毛线球球采纳,获得10
11秒前
天天快乐应助春风明月采纳,获得10
12秒前
yyy发布了新的文献求助10
13秒前
林安笙完成签到,获得积分10
13秒前
cau_zq发布了新的文献求助10
14秒前
李爱国应助义气语海采纳,获得10
14秒前
14秒前
科研通AI2S应助花成花采纳,获得10
15秒前
BareBear应助花成花采纳,获得10
15秒前
16秒前
18秒前
qing完成签到 ,获得积分10
19秒前
皮皮团完成签到 ,获得积分10
19秒前
19秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314