A novel bionic olfactory network combined with an electronic nose for identification of industrial exhaust

嗅球 嗅觉系统 电子鼻 可解释性 模式识别(心理学) 计算机科学 人工智能 气味 人工神经网络 卷积神经网络 神经科学 生物 中枢神经系统
作者
Yan Jia,H. Zhang,Xinran Ge,Wenzheng Yang,Xiaoyan Peng,Tao Liu
出处
期刊:Microchemical Journal [Elsevier]
卷期号:200: 110287-110287 被引量:2
标识
DOI:10.1016/j.microc.2024.110287
摘要

Traditional electronic nose (E-nose) signal processing methods and classification techniques are often cumbersome, heavily dependent on the experience of the implementers and poor in biological interpretability. In view of the above problems, a novel bionic olfactory network is proposed for processing E-nose data for industrial exhaust identification. First, the bionic olfactory network (BON) consists of a bionic olfactory bulb system (BOBS) and a bionic olfactory cortex (BOC). The BOBS highly simulates the odor information conduction function of the mammalian olfactory bulb and is composed of a novel bionic olfactory bulb model and recurrence quantification analysis (RQA), which can transform the original sensor responses into neuron spike sequences and extract features from the sequences, simplifying traditional data processing steps. The BOC is a convolutional spiking neural network that primarily imitates the odor information recognition function of the olfactory cortex in the mammalian olfactory system. The whole BON exhibits excellent biological interpretability due to its unique mode of information transmission. Finally, the experimental data of ten types of industrial exhaust were collected by using a self-built E-nose system. The experimental results indicate that the classification accuracy of the BON is 94.4%, which is much better than that of the combination of traditional signal processing methods and classification techniques. An even better recognition accuracy of 79.2% can be obtained in small sample training, which is still the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
暮夏子完成签到,获得积分10
1秒前
1秒前
费费仙女发布了新的文献求助10
1秒前
SciGPT应助佳亮辰采纳,获得10
3秒前
陈程发布了新的文献求助10
4秒前
5秒前
7秒前
我想当二郎神完成签到,获得积分10
7秒前
苏楠完成签到 ,获得积分10
7秒前
123free完成签到,获得积分10
8秒前
10秒前
Liz完成签到 ,获得积分10
10秒前
12发布了新的文献求助10
13秒前
13秒前
13秒前
陈程完成签到,获得积分20
14秒前
小正完成签到,获得积分10
15秒前
南瓜灯Lample完成签到 ,获得积分10
15秒前
Akim应助研友_nPol2L采纳,获得10
15秒前
led完成签到,获得积分10
16秒前
完美世界应助康利萍采纳,获得10
17秒前
Ava应助Tokgo采纳,获得10
17秒前
Xixia完成签到,获得积分10
17秒前
19秒前
123完成签到,获得积分10
19秒前
20秒前
Dandelion完成签到,获得积分10
21秒前
123发布了新的文献求助10
21秒前
英姑应助费费仙女采纳,获得10
22秒前
科研通AI2S应助hao采纳,获得10
22秒前
22秒前
WaveletZ完成签到,获得积分10
24秒前
daladala发布了新的文献求助10
25秒前
孝铮发布了新的文献求助10
25秒前
27秒前
Dr大壮发布了新的文献求助10
28秒前
hsf完成签到 ,获得积分10
28秒前
29秒前
费费仙女完成签到,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023