A novel bionic olfactory network combined with an electronic nose for identification of industrial exhaust

嗅球 嗅觉系统 电子鼻 可解释性 模式识别(心理学) 计算机科学 人工智能 气味 人工神经网络 卷积神经网络 神经科学 生物 中枢神经系统
作者
Yan Jia,H. Zhang,Xinran Ge,Wenzheng Yang,Xiaoyan Peng,Tao Liu
出处
期刊:Microchemical Journal [Elsevier]
卷期号:200: 110287-110287 被引量:6
标识
DOI:10.1016/j.microc.2024.110287
摘要

Traditional electronic nose (E-nose) signal processing methods and classification techniques are often cumbersome, heavily dependent on the experience of the implementers and poor in biological interpretability. In view of the above problems, a novel bionic olfactory network is proposed for processing E-nose data for industrial exhaust identification. First, the bionic olfactory network (BON) consists of a bionic olfactory bulb system (BOBS) and a bionic olfactory cortex (BOC). The BOBS highly simulates the odor information conduction function of the mammalian olfactory bulb and is composed of a novel bionic olfactory bulb model and recurrence quantification analysis (RQA), which can transform the original sensor responses into neuron spike sequences and extract features from the sequences, simplifying traditional data processing steps. The BOC is a convolutional spiking neural network that primarily imitates the odor information recognition function of the olfactory cortex in the mammalian olfactory system. The whole BON exhibits excellent biological interpretability due to its unique mode of information transmission. Finally, the experimental data of ten types of industrial exhaust were collected by using a self-built E-nose system. The experimental results indicate that the classification accuracy of the BON is 94.4%, which is much better than that of the combination of traditional signal processing methods and classification techniques. An even better recognition accuracy of 79.2% can be obtained in small sample training, which is still the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
魏煜佳完成签到,获得积分10
1秒前
2秒前
Lynne发布了新的文献求助10
4秒前
sally发布了新的文献求助10
5秒前
baihehuakai发布了新的文献求助30
6秒前
7秒前
酷波er应助鱿鱼苦瓜汤采纳,获得10
7秒前
8秒前
9秒前
9秒前
10秒前
lian发布了新的文献求助10
13秒前
不想看文献完成签到 ,获得积分10
14秒前
刘哔发布了新的文献求助10
14秒前
善学以致用应助Lynne采纳,获得10
15秒前
收醉人发布了新的文献求助10
16秒前
11发布了新的文献求助10
16秒前
顷梦完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
djbj2022发布了新的文献求助10
21秒前
WN发布了新的文献求助10
21秒前
messyknots完成签到,获得积分10
22秒前
刘哔完成签到,获得积分10
22秒前
22秒前
烂漫忆山关注了科研通微信公众号
22秒前
熊猫完成签到 ,获得积分10
23秒前
深情安青应助王小红采纳,获得10
23秒前
pluto应助文文采纳,获得10
23秒前
shiqiang mu应助11采纳,获得10
26秒前
斯文败类应助11采纳,获得10
26秒前
26秒前
26秒前
lanlan完成签到 ,获得积分10
27秒前
28秒前
28秒前
鹏笑发布了新的文献求助10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425233
求助须知:如何正确求助?哪些是违规求助? 4539321
关于积分的说明 14166837
捐赠科研通 4456547
什么是DOI,文献DOI怎么找? 2444245
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412581