偏最小二乘回归
瓶颈
生物系统
近红外光谱
淀粉
干扰(通信)
水分
数学
计算机科学
化学
分析化学(期刊)
色谱法
统计
食品科学
生物
频道(广播)
计算机网络
有机化学
神经科学
嵌入式系统
作者
Xiaohong Li,Zhuopin Xu,Liwen Tang,Guangxia Zhao,Yuejin Wu,Pengfei Zhang,Qi Wang
标识
DOI:10.1016/j.saa.2024.124033
摘要
The detection of maize starch content is of great significance for maize processing industry and near-infrared spectroscopy (NIRS) is an ideal rapid detection technology. However, the interference of moisture in maize is a bottleneck problem that affects the accuracy of NIRS quantitative analysis. In this study, we proposed methods based on external parameter orthogonalization (EPO) combined with wavelength selection algorithms to bring more accurate analytical results. Two groups of maize starch samples with different moisture content distributions were investigated to compare the predictive performance of NIRS models. The results showed that the model built using EPO combined with the synergy interval partial least squares (EPO-siPLS) algorithm exhibited the superior prediction accuracy, whose RMSEP/RMSEPck is improved by 9.7 % compared with that of siPLS model, 25.3 % compared with that of EPO-PLS, and 45.8 % compared with that of the PLS model. This study provides a more accurate and robust new method for rapid detection of maize starch and offers new insights for its application.
科研通智能强力驱动
Strongly Powered by AbleSci AI