Abstract WMP20: Deep Learning Radiomics Identifies White Matter Hyperintensity-Related Cognitive Decline Based on T2-FLAIR

医学 流体衰减反转恢复 高强度 无线电技术 认知功能衰退 白质 白质疏松症 认知 冲程(发动机) 磁共振成像 内科学 放射科 精神科 痴呆 疾病 机械工程 工程类
作者
Lili Huang,Xiaolei Zhu,Hui Zhao,Yuting Mo,Dan Yang,Chenglu Mao,Zhihong Ke,Yun Xu
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:55 (Suppl_1)
标识
DOI:10.1161/str.55.suppl_1.wmp20
摘要

Introduction: Early identification of white matter hyperintensity-related cognitive impairment (WMH-CI) through normal MRI images is of great significance for early clinical intervention to reduce the occurrence of dementia. The aim of this study was to develop a generalizable and interpretable deep learning model for screening WMH-related CI using radiomic features (RFs) from T2 fluid-attenuated inversion recovery (T2-FLAIR) images. Methods: A total of 783 subjects were enrolled from three medical centres. RFs for WMH lesions were extracted from T2-FLAIR images in each subject. A deep learning model with a hierarchical transformer architecture was used to leverage all extracted RFs, instead of feature selection, to develop and cross-validate the diagnostic model for cognitive dysfunction. Unsupervised domain adaptation was used to address the cross-centre data inconsistencies without labelling the outer centre data. A gradient-weighted class activation mapping approach was adopted to identify the RFs that contributed most to the diagnosis. Subgroup analysis, correlation analysis and mediation analysis were performed to confirm the clinical relevance of the model. Besides, we also verify the clinical importance of the model by microstructural pathology of WMH detected by diffusion tensor imaging. Results: The deep learning model showed robust diagnostic power for WMH related CI, with an area under the receiver operating curve (AUC) of 0.841±0.016 in the development cohort. The prediction accuracy, sensitivity, specificity, precision and recall were 0.793 ± 0.108, 0.798 ± 0.021, 0.800 ± 0.065, 0.716±0.055 and 0.793 ± 0.108, respectively. The model generalized well across different subgroups. It also performed well in other two external verification cohorts, with an AUC of 0.859 and 0.749, respectively. The visual representation showed that the most important features were textural features, which were also significantly correlated with clinical assessment scale and diffusion parameters. Conclusions: This study presents a non-invasive imaging biomarker that can identify WMH-CI patients and is applicable to all levels of hospitals since only conventional MRI images are needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助啾啾采纳,获得10
1秒前
NexusExplorer应助喜悦的大船采纳,获得50
3秒前
赤侯发布了新的文献求助10
4秒前
5秒前
科研通AI5应助wangjw采纳,获得10
5秒前
6秒前
打打应助坦率大米采纳,获得30
6秒前
9秒前
科研通AI5应助cctv18采纳,获得10
9秒前
phyllis发布了新的文献求助10
10秒前
专注鼠标发布了新的文献求助10
10秒前
11秒前
神说应助cm357558984采纳,获得10
11秒前
11秒前
cctv18给123的求助进行了留言
13秒前
烟花应助余成风采纳,获得10
13秒前
yang完成签到,获得积分10
13秒前
14秒前
九影节发布了新的文献求助10
14秒前
晨雨初听发布了新的文献求助10
14秒前
hero发布了新的文献求助10
15秒前
15秒前
ABEDO发布了新的文献求助10
17秒前
18秒前
汉堡包应助王小明采纳,获得10
19秒前
phyllis完成签到,获得积分10
20秒前
小二郎应助hxy采纳,获得10
21秒前
21秒前
wangjw发布了新的文献求助10
21秒前
21秒前
22秒前
九影节完成签到,获得积分10
24秒前
冰红茶发布了新的文献求助10
24秒前
domingo完成签到,获得积分10
24秒前
科研通AI5应助晨雨初听采纳,获得10
26秒前
专注鼠标完成签到,获得积分10
27秒前
赘婿应助tom采纳,获得20
29秒前
cctv18重新开启了123文献应助
30秒前
30秒前
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756621
求助须知:如何正确求助?哪些是违规求助? 3299946
关于积分的说明 10112052
捐赠科研通 3014452
什么是DOI,文献DOI怎么找? 1655544
邀请新用户注册赠送积分活动 790009
科研通“疑难数据库(出版商)”最低求助积分说明 753533