T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas

医学 无线电技术 流体衰减反转恢复 接收机工作特性 曲线下面积 有效扩散系数 队列 放射科 磁共振成像 核医学 病理 内科学
作者
Wei Tang,Chun‐Qiu Su,Jiuann‐Huey Lin,Zhiwei Xia,Shanshan Lu,Xunning Hong
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (5): e750-e758 被引量:2
标识
DOI:10.1016/j.crad.2024.01.021
摘要

AIM To investigate the application of the T2-weighted (T2)-fluid-attenuated inversion recovery (FLAIR) mismatch sign and machine learning-based multiparametric magnetic resonance imaging (MRI) radiomics in predicting 1p/19q non-co-deletion of lower-grade gliomas (LGGs). MATERIALS AND METHODS One hundred and forty-six patients, who had pathologically confirmed isocitrate dehydrogenase (IDH) mutant LGGs were assigned randomly to the training cohort (n=102) and the testing cohort (n=44) at a ratio of 7:3. The T2-FLAIR mismatch sign and conventional MRI features were evaluated. Radiomics features extracted from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), FLAIR, apparent diffusion coefficient (ADC), and contrast-enhanced T1WI images (CE-T1WI). The models that displayed the best performance of each sequence were selected, and their predicted values as well as the T2-FLAIR mismatch sign data were collected to establish a final stacking model. Receiver operating characteristic curve (ROC) analyses and area under the curve (AUC) values were applied to evaluate and compare the performance of the models. RESULTS The T2-FLAIR mismatch sign was more common in the IDH mutant 1p/19q non-co-deleted group (p<0.05) and the area under the curve (AUC) value was 0.692 with sensitivity 0.397, specificity 0.987, and accuracy 0.712, respectively. The stacking model showed a favourable performance with an AUC of 0.925 and accuracy of 0.882 in the training cohort and an AUC of 0.886 and accuracy of 0.864 in the testing cohort. CONCLUSION The stacking model based on multiparametric MRI can serve as a supplementary tool for pathological diagnosis, offering valuable guidance for clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
贺知什么书完成签到,获得积分10
1秒前
歌儿完成签到 ,获得积分10
1秒前
鳈sir发布了新的文献求助10
2秒前
2秒前
rapunzel发布了新的文献求助10
3秒前
wy完成签到 ,获得积分10
4秒前
ddizi发布了新的文献求助10
4秒前
佛人世间完成签到,获得积分10
4秒前
科研通AI6应助ljact采纳,获得10
6秒前
情怀应助Zhu1985采纳,获得10
6秒前
FashionBoy应助内向的昊焱采纳,获得10
6秒前
科研通AI6应助内向的昊焱采纳,获得10
6秒前
无花果应助文艺的草莓采纳,获得10
6秒前
ycy发布了新的文献求助10
7秒前
9秒前
9秒前
10秒前
Ava应助ddizi采纳,获得30
10秒前
10秒前
小池同学完成签到,获得积分10
11秒前
科研通AI6应助121311采纳,获得10
12秒前
Carolin发布了新的文献求助10
12秒前
谦让涵菡完成签到 ,获得积分10
13秒前
王耀武完成签到,获得积分10
13秒前
朴素念之完成签到,获得积分20
14秒前
14秒前
学术裁缝发布了新的文献求助10
14秒前
连冬萱发布了新的文献求助10
14秒前
ruby完成签到,获得积分10
14秒前
大魔王完成签到 ,获得积分10
15秒前
zhang完成签到,获得积分10
15秒前
YW发布了新的文献求助30
15秒前
xg发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
踏实绮露完成签到 ,获得积分10
19秒前
19秒前
iam小羊人完成签到,获得积分20
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702