已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas

医学 无线电技术 流体衰减反转恢复 接收机工作特性 曲线下面积 有效扩散系数 队列 放射科 磁共振成像 核医学 病理 内科学
作者
Wei Tang,Chun‐Qiu Su,Jiuann‐Huey Lin,Zhiwei Xia,Shanshan Lu,Xunning Hong
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (5): e750-e758 被引量:2
标识
DOI:10.1016/j.crad.2024.01.021
摘要

AIM To investigate the application of the T2-weighted (T2)-fluid-attenuated inversion recovery (FLAIR) mismatch sign and machine learning-based multiparametric magnetic resonance imaging (MRI) radiomics in predicting 1p/19q non-co-deletion of lower-grade gliomas (LGGs). MATERIALS AND METHODS One hundred and forty-six patients, who had pathologically confirmed isocitrate dehydrogenase (IDH) mutant LGGs were assigned randomly to the training cohort (n=102) and the testing cohort (n=44) at a ratio of 7:3. The T2-FLAIR mismatch sign and conventional MRI features were evaluated. Radiomics features extracted from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), FLAIR, apparent diffusion coefficient (ADC), and contrast-enhanced T1WI images (CE-T1WI). The models that displayed the best performance of each sequence were selected, and their predicted values as well as the T2-FLAIR mismatch sign data were collected to establish a final stacking model. Receiver operating characteristic curve (ROC) analyses and area under the curve (AUC) values were applied to evaluate and compare the performance of the models. RESULTS The T2-FLAIR mismatch sign was more common in the IDH mutant 1p/19q non-co-deleted group (p<0.05) and the area under the curve (AUC) value was 0.692 with sensitivity 0.397, specificity 0.987, and accuracy 0.712, respectively. The stacking model showed a favourable performance with an AUC of 0.925 and accuracy of 0.882 in the training cohort and an AUC of 0.886 and accuracy of 0.864 in the testing cohort. CONCLUSION The stacking model based on multiparametric MRI can serve as a supplementary tool for pathological diagnosis, offering valuable guidance for clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰的小甜瓜完成签到 ,获得积分20
刚刚
爆米花应助suiqing采纳,获得10
1秒前
2秒前
dmoney完成签到,获得积分10
2秒前
深情安青应助十八鱼采纳,获得10
4秒前
4秒前
4秒前
还好完成签到,获得积分10
5秒前
Ying完成签到,获得积分20
5秒前
张江泽完成签到,获得积分10
6秒前
小蘑菇应助下雨天采纳,获得10
7秒前
Owen应助宁祥森采纳,获得10
7秒前
xkkk完成签到,获得积分10
8秒前
科研通AI5应助dcy采纳,获得10
9秒前
巫马垣发布了新的文献求助10
9秒前
小江不饿发布了新的文献求助10
9秒前
zc完成签到,获得积分20
11秒前
phil发布了新的文献求助10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
核桃应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
Homas_69发布了新的文献求助10
17秒前
20秒前
辛夷完成签到,获得积分10
20秒前
故意的如容完成签到,获得积分20
20秒前
郭郭完成签到 ,获得积分10
22秒前
充电宝应助JIyong采纳,获得10
23秒前
24秒前
彩色靖儿完成签到 ,获得积分10
25秒前
许三问完成签到 ,获得积分0
27秒前
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4982025
求助须知:如何正确求助?哪些是违规求助? 4233878
关于积分的说明 13187790
捐赠科研通 4025534
什么是DOI,文献DOI怎么找? 2202309
邀请新用户注册赠送积分活动 1214620
关于科研通互助平台的介绍 1131039