T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas

医学 无线电技术 流体衰减反转恢复 接收机工作特性 曲线下面积 有效扩散系数 队列 放射科 磁共振成像 核医学 病理 内科学
作者
Wei Tang,Chun‐Qiu Su,Jiuann‐Huey Lin,Zhiwei Xia,Shanshan Lu,Xunning Hong
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (5): e750-e758 被引量:2
标识
DOI:10.1016/j.crad.2024.01.021
摘要

AIM To investigate the application of the T2-weighted (T2)-fluid-attenuated inversion recovery (FLAIR) mismatch sign and machine learning-based multiparametric magnetic resonance imaging (MRI) radiomics in predicting 1p/19q non-co-deletion of lower-grade gliomas (LGGs). MATERIALS AND METHODS One hundred and forty-six patients, who had pathologically confirmed isocitrate dehydrogenase (IDH) mutant LGGs were assigned randomly to the training cohort (n=102) and the testing cohort (n=44) at a ratio of 7:3. The T2-FLAIR mismatch sign and conventional MRI features were evaluated. Radiomics features extracted from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), FLAIR, apparent diffusion coefficient (ADC), and contrast-enhanced T1WI images (CE-T1WI). The models that displayed the best performance of each sequence were selected, and their predicted values as well as the T2-FLAIR mismatch sign data were collected to establish a final stacking model. Receiver operating characteristic curve (ROC) analyses and area under the curve (AUC) values were applied to evaluate and compare the performance of the models. RESULTS The T2-FLAIR mismatch sign was more common in the IDH mutant 1p/19q non-co-deleted group (p<0.05) and the area under the curve (AUC) value was 0.692 with sensitivity 0.397, specificity 0.987, and accuracy 0.712, respectively. The stacking model showed a favourable performance with an AUC of 0.925 and accuracy of 0.882 in the training cohort and an AUC of 0.886 and accuracy of 0.864 in the testing cohort. CONCLUSION The stacking model based on multiparametric MRI can serve as a supplementary tool for pathological diagnosis, offering valuable guidance for clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
着急的问凝完成签到,获得积分20
1秒前
Rooo888完成签到,获得积分10
1秒前
领导范儿应助可爱花瓣采纳,获得10
2秒前
wanci应助lxl采纳,获得10
5秒前
电闪完成签到,获得积分10
5秒前
0109完成签到,获得积分10
6秒前
Hello应助浅呀呀呀采纳,获得10
6秒前
ding应助柑橘味的汽水采纳,获得10
8秒前
9秒前
高贵熊猫应助wzy采纳,获得20
10秒前
贺光萌完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
13秒前
scanker1981发布了新的文献求助30
14秒前
14秒前
15秒前
小芽完成签到,获得积分10
15秒前
scanker1981发布了新的文献求助30
15秒前
scanker1981发布了新的文献求助10
15秒前
scanker1981发布了新的文献求助10
15秒前
16秒前
空白格完成签到 ,获得积分10
16秒前
Emilia发布了新的文献求助10
17秒前
金金金完成签到,获得积分10
17秒前
可爱花瓣发布了新的文献求助10
17秒前
打打应助xfwd采纳,获得10
17秒前
17秒前
19秒前
Yang完成签到,获得积分10
19秒前
爱学术的LaoD完成签到,获得积分10
20秒前
20秒前
南风完成签到,获得积分10
20秒前
胡1111完成签到 ,获得积分10
21秒前
lxl发布了新的文献求助10
21秒前
Han完成签到 ,获得积分10
22秒前
DandanHan0916完成签到,获得积分10
22秒前
爆米花应助灌灌灌灌规划采纳,获得10
22秒前
czj发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307051
求助须知:如何正确求助?哪些是违规求助? 4452740
关于积分的说明 13855150
捐赠科研通 4340324
什么是DOI,文献DOI怎么找? 2383115
邀请新用户注册赠送积分活动 1377917
关于科研通互助平台的介绍 1345800