电解质
离子电导率
电导率
材料科学
阴极
阳极
卤化物
球磨机
快离子导体
金属
无机化学
化学工程
化学
冶金
物理化学
电极
工程类
作者
Juntao Shi,Zhujun Yao,Jiayuan Xiang,Chen Cai,Fangfang Tu,Yongqi Zhang,Weilin Yao,Qixiang Jia,Yan Zhou,Shenghui Shen,Yefeng Yang
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2024-01-20
卷期号:12 (5): 2009-2017
被引量:8
标识
DOI:10.1021/acssuschemeng.3c06652
摘要
The combined advantages of good mechanical deformability, high Li+ conductivity, and strong compatibility with 4 V-class cathodes make halide solid-state electrolytes promising candidates for high-energy all-solid-state lithium–metal batteries (ASSLMBs). Among these, the cost-effective Li2ZrCl6 has garnered significant attention due to the non-inclusion of rare-earth metals. However, the conventional one-step ball-milling synthesized Li2ZrCl6 always exhibits an ionic conductivity lower than 5 × 10–4 S cm–1 in most literature. Here, a simple optimized two-step ball-milling strategy is adopted to achieve a high Li+ conductivity of nearly 1 × 10–3 S cm–1 at 30 °C for Li2ZrCl6. Simultaneously, the effects of rotational speed and ball-to-powder mass ratio on the structure and ionic conductivity of Li2ZrCl6 are investigated. The Li+ migration pathways in electrolytes are also studied by bond valence site energy (BVSE) calculations. Moreover, the application potential of the modified Li2ZrCl6 electrolyte in ASSLMBs assembled with the LiCoO2 cathode and the lithium–indium alloy anode has been studied. The ASSLMBs exhibit an initial discharge capacity of 123.4 mA h g–1 at room temperature (0.1 C) and a capacity retention of 71% after 50 cycles. Therefore, this study introduces an effective strategy for synthesizing high-performance halide electrolytes, thus facilitating the practical implementation of halide-based ASSLMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI