亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Multilayer Perceptron Neural Network for the Prediction of Iranian Dam Project Delay Risks

人工神经网络 人工智能 多层感知器 深度学习 计算机科学 机器学习 预测建模 感知器 主成分分析 交叉验证 数据挖掘
作者
Danial Hosseini Shirazi,Hossein Toosi
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:149 (4) 被引量:7
标识
DOI:10.1061/jcemd4.coeng-12367
摘要

Construction delays are among the industry's most significant challenges, especially in the infrastructure sector, where delays can have serious socio-economic consequences. Recently, advances in deep learning (DL) have opened up new possibilities for tackling complex issues more efficiently. This study aims to evaluate the potential of deep neural networks in predicting the level of delay in Iranian dam construction projects. As the first step, 65 delay risk factors were identified through a comprehensive literature review and interviews. Then risk scores for 53 completed dam projects in Iran were determined through a questionnaire survey. Subsequently, the most significant latent features were extracted using principal component analysis (PCA). The resultant variables were combined with two project characteristics to develop the input dataset. Finally, the resulting dataset was used to develop a deep multilayer perceptron neural network (MLP-NN) model to predict project delays. The prediction performance of the deep-MLP model was then evaluated and compared to that of the best delay prediction models found in previous studies. The three-times repeated stratified five-fold cross-validation results demonstrated that the proposed deep-NN model outperformed all previous approaches for delay prediction on all performance metrics. This study also explores the effectiveness of combining delay risk factors with project characteristics to train the predictive model. According to the results, adding project characteristic factors to the training dataset significantly improved the prediction performance of deep-MLP. The work presented here can assist managers of future dam constructions in the early stages of the project in selecting and prioritizing projects within a portfolio and allocating a sufficient buffer to ensure the project's timely completion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luandouing完成签到,获得积分10
45秒前
1分钟前
1分钟前
jiaaniu完成签到 ,获得积分10
1分钟前
1分钟前
玛琳卡迪马完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
四斤瓜完成签到 ,获得积分10
2分钟前
2分钟前
欢呼沅发布了新的文献求助10
2分钟前
juan完成签到 ,获得积分10
2分钟前
斯文败类应助欢呼沅采纳,获得10
2分钟前
3分钟前
诗乃发布了新的文献求助10
3分钟前
bkagyin应助力元11采纳,获得10
3分钟前
谭平完成签到 ,获得积分10
3分钟前
yindi1991完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
力元11发布了新的文献求助10
3分钟前
舒适怀寒完成签到 ,获得积分10
3分钟前
聂白晴完成签到,获得积分10
4分钟前
华仔应助科研通管家采纳,获得20
5分钟前
大模型应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
赵帅完成签到 ,获得积分10
5分钟前
6分钟前
Mkstar发布了新的文献求助20
6分钟前
九龍完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
Mkstar完成签到,获得积分10
7分钟前
大胆的碧菡完成签到,获得积分10
7分钟前
段誉完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助50
8分钟前
九龍发布了新的文献求助10
8分钟前
研友_VZG7GZ应助wjh采纳,获得10
8分钟前
9分钟前
斯文败类应助科研通管家采纳,获得10
9分钟前
9分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015194
求助须知:如何正确求助?哪些是违规求助? 3555161
关于积分的说明 11317925
捐赠科研通 3288594
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983