亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Multilayer Perceptron Neural Network for the Prediction of Iranian Dam Project Delay Risks

人工神经网络 人工智能 多层感知器 深度学习 计算机科学 机器学习 预测建模 感知器 主成分分析 交叉验证 数据挖掘
作者
Danial Hosseini Shirazi,Hossein Toosi
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:149 (4) 被引量:7
标识
DOI:10.1061/jcemd4.coeng-12367
摘要

Construction delays are among the industry's most significant challenges, especially in the infrastructure sector, where delays can have serious socio-economic consequences. Recently, advances in deep learning (DL) have opened up new possibilities for tackling complex issues more efficiently. This study aims to evaluate the potential of deep neural networks in predicting the level of delay in Iranian dam construction projects. As the first step, 65 delay risk factors were identified through a comprehensive literature review and interviews. Then risk scores for 53 completed dam projects in Iran were determined through a questionnaire survey. Subsequently, the most significant latent features were extracted using principal component analysis (PCA). The resultant variables were combined with two project characteristics to develop the input dataset. Finally, the resulting dataset was used to develop a deep multilayer perceptron neural network (MLP-NN) model to predict project delays. The prediction performance of the deep-MLP model was then evaluated and compared to that of the best delay prediction models found in previous studies. The three-times repeated stratified five-fold cross-validation results demonstrated that the proposed deep-NN model outperformed all previous approaches for delay prediction on all performance metrics. This study also explores the effectiveness of combining delay risk factors with project characteristics to train the predictive model. According to the results, adding project characteristic factors to the training dataset significantly improved the prediction performance of deep-MLP. The work presented here can assist managers of future dam constructions in the early stages of the project in selecting and prioritizing projects within a portfolio and allocating a sufficient buffer to ensure the project's timely completion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
梦想家完成签到,获得积分10
51秒前
53秒前
story发布了新的文献求助10
58秒前
科研通AI2S应助story采纳,获得10
1分钟前
1分钟前
鉴定为学计算学的完成签到,获得积分10
1分钟前
熊啊发布了新的文献求助10
1分钟前
Kevin完成签到,获得积分10
2分钟前
sci2025opt完成签到 ,获得积分10
2分钟前
2分钟前
李健应助鸡蛋黄采纳,获得10
2分钟前
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
3分钟前
鸡蛋黄发布了新的文献求助10
3分钟前
完美世界应助眼睛大智宸采纳,获得10
3分钟前
市政的艺术家完成签到,获得积分10
3分钟前
Virtual应助科研通管家采纳,获得20
3分钟前
JamesPei应助市政的艺术家采纳,获得20
3分钟前
lod完成签到,获得积分10
4分钟前
4分钟前
淡淡醉波wuliao完成签到 ,获得积分0
4分钟前
可可完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
熊啊发布了新的文献求助10
5分钟前
lj发布了新的文献求助10
5分钟前
Ava应助krajicek采纳,获得10
5分钟前
NexusExplorer应助熊啊采纳,获得10
5分钟前
lj完成签到,获得积分10
5分钟前
5分钟前
krajicek发布了新的文献求助10
5分钟前
排骨大王完成签到,获得积分10
5分钟前
5分钟前
6分钟前
灵巧灵松发布了新的文献求助10
6分钟前
6分钟前
Jiayi完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877