已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Multilayer Perceptron Neural Network for the Prediction of Iranian Dam Project Delay Risks

人工神经网络 人工智能 多层感知器 深度学习 计算机科学 机器学习 预测建模 感知器 主成分分析 交叉验证 数据挖掘
作者
Danial Hosseini Shirazi,Hossein Toosi
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:149 (4) 被引量:7
标识
DOI:10.1061/jcemd4.coeng-12367
摘要

Construction delays are among the industry's most significant challenges, especially in the infrastructure sector, where delays can have serious socio-economic consequences. Recently, advances in deep learning (DL) have opened up new possibilities for tackling complex issues more efficiently. This study aims to evaluate the potential of deep neural networks in predicting the level of delay in Iranian dam construction projects. As the first step, 65 delay risk factors were identified through a comprehensive literature review and interviews. Then risk scores for 53 completed dam projects in Iran were determined through a questionnaire survey. Subsequently, the most significant latent features were extracted using principal component analysis (PCA). The resultant variables were combined with two project characteristics to develop the input dataset. Finally, the resulting dataset was used to develop a deep multilayer perceptron neural network (MLP-NN) model to predict project delays. The prediction performance of the deep-MLP model was then evaluated and compared to that of the best delay prediction models found in previous studies. The three-times repeated stratified five-fold cross-validation results demonstrated that the proposed deep-NN model outperformed all previous approaches for delay prediction on all performance metrics. This study also explores the effectiveness of combining delay risk factors with project characteristics to train the predictive model. According to the results, adding project characteristic factors to the training dataset significantly improved the prediction performance of deep-MLP. The work presented here can assist managers of future dam constructions in the early stages of the project in selecting and prioritizing projects within a portfolio and allocating a sufficient buffer to ensure the project's timely completion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiko发布了新的文献求助10
刚刚
2秒前
Kristine完成签到 ,获得积分10
3秒前
常绝山完成签到 ,获得积分10
4秒前
4秒前
NiuNiu发布了新的文献求助20
5秒前
chen完成签到,获得积分10
6秒前
meow完成签到 ,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
浮游应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
清爽老九应助科研通管家采纳,获得30
9秒前
情怀应助科研通管家采纳,获得10
9秒前
GingerF应助科研通管家采纳,获得50
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
加贝火火完成签到 ,获得积分10
9秒前
9秒前
清爽老九应助科研通管家采纳,获得30
9秒前
9秒前
kiko完成签到,获得积分20
11秒前
张章发布了新的文献求助10
11秒前
牛牛完成签到 ,获得积分10
12秒前
康谨完成签到 ,获得积分10
12秒前
无幻完成签到 ,获得积分10
17秒前
隐形曼青应助xjz采纳,获得10
18秒前
19秒前
20秒前
黑神白了完成签到 ,获得积分10
21秒前
鲜艳的采白应助mark707采纳,获得50
21秒前
团宝妞宝完成签到,获得积分10
23秒前
浮浮世世发布了新的文献求助10
24秒前
隐形曼青应助lf-leo采纳,获得10
25秒前
25秒前
我是老大应助joy采纳,获得10
26秒前
Xiao完成签到 ,获得积分10
27秒前
29秒前
Gzl完成签到 ,获得积分10
29秒前
31秒前
mark707完成签到,获得积分10
31秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136552
求助须知:如何正确求助?哪些是违规求助? 4336682
关于积分的说明 13510228
捐赠科研通 4174745
什么是DOI,文献DOI怎么找? 2289040
邀请新用户注册赠送积分活动 1289739
关于科研通互助平台的介绍 1231058