Deep Multilayer Perceptron Neural Network for the Prediction of Iranian Dam Project Delay Risks

人工神经网络 人工智能 多层感知器 深度学习 计算机科学 机器学习 预测建模 感知器 主成分分析 交叉验证 数据挖掘
作者
Danial Hosseini Shirazi,Hossein Toosi
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:149 (4) 被引量:7
标识
DOI:10.1061/jcemd4.coeng-12367
摘要

Construction delays are among the industry's most significant challenges, especially in the infrastructure sector, where delays can have serious socio-economic consequences. Recently, advances in deep learning (DL) have opened up new possibilities for tackling complex issues more efficiently. This study aims to evaluate the potential of deep neural networks in predicting the level of delay in Iranian dam construction projects. As the first step, 65 delay risk factors were identified through a comprehensive literature review and interviews. Then risk scores for 53 completed dam projects in Iran were determined through a questionnaire survey. Subsequently, the most significant latent features were extracted using principal component analysis (PCA). The resultant variables were combined with two project characteristics to develop the input dataset. Finally, the resulting dataset was used to develop a deep multilayer perceptron neural network (MLP-NN) model to predict project delays. The prediction performance of the deep-MLP model was then evaluated and compared to that of the best delay prediction models found in previous studies. The three-times repeated stratified five-fold cross-validation results demonstrated that the proposed deep-NN model outperformed all previous approaches for delay prediction on all performance metrics. This study also explores the effectiveness of combining delay risk factors with project characteristics to train the predictive model. According to the results, adding project characteristic factors to the training dataset significantly improved the prediction performance of deep-MLP. The work presented here can assist managers of future dam constructions in the early stages of the project in selecting and prioritizing projects within a portfolio and allocating a sufficient buffer to ensure the project's timely completion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助ANY采纳,获得10
1秒前
cloud发布了新的文献求助10
2秒前
华仔应助失眠的耳机采纳,获得10
2秒前
大胆班完成签到,获得积分10
2秒前
2秒前
霍霍发布了新的文献求助10
3秒前
馆长应助zj采纳,获得30
3秒前
善学以致用应助zj采纳,获得10
3秒前
曾无忧发布了新的文献求助10
3秒前
wrx_KGM完成签到,获得积分10
3秒前
大模型应助purist采纳,获得10
5秒前
Dr_Sean发布了新的文献求助10
5秒前
6秒前
6秒前
Bob完成签到,获得积分10
6秒前
英俊的铭应助天宁采纳,获得10
6秒前
wrx_KGM发布了新的文献求助10
6秒前
6秒前
6秒前
李健应助碧蓝恶天采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
浮游应助路在脚下采纳,获得10
9秒前
10秒前
10秒前
可爱的函函应助wrx_KGM采纳,获得10
10秒前
温婉的曼冬完成签到,获得积分10
11秒前
Hope发布了新的文献求助30
11秒前
四夕完成签到 ,获得积分10
12秒前
赘婿应助小肥羊采纳,获得10
12秒前
zzm完成签到,获得积分10
14秒前
orixero应助2240920060采纳,获得10
14秒前
一颗星发布了新的文献求助10
15秒前
purist完成签到,获得积分10
15秒前
18秒前
彪壮的青雪完成签到,获得积分10
18秒前
小二郎应助phl采纳,获得10
18秒前
18秒前
Fly完成签到,获得积分10
19秒前
20秒前
彭于晏应助一颗星采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896403
求助须知:如何正确求助?哪些是违规求助? 4178074
关于积分的说明 12969799
捐赠科研通 3941347
什么是DOI,文献DOI怎么找? 2162226
邀请新用户注册赠送积分活动 1180680
关于科研通互助平台的介绍 1086242