Machine learning applications for identify the geographical origin, variety and processing of black tea using 1H NMR chemical fingerprinting

红茶 代谢组学 随机森林 指纹(计算) 线性判别分析 计算机科学 数学 生物 化学 生物技术 传统医学 食品科学 人工智能 色谱法 医学
作者
Chuanjian Cui,Yifan Xu,Ge Jin,Jian-Fa Zong,Chuanyi Peng,Huimei Cai,Ruyan Hou
出处
期刊:Food Control [Elsevier]
卷期号:148: 109686-109686 被引量:22
标识
DOI:10.1016/j.foodcont.2023.109686
摘要

The geographical origin of black tea can affect commercial value and is highly susceptible to food fraud. In this study, nuclear magnetic resonance (NMR) spectroscopy was used for untargeted metabolomics analysis of 219 black tea samples from seven major black tea producing regions in China (Anhui, Yunnan, Fujian, and Guangdong), India (Darjeeling and Assam) and Sri Lanka (Kandy). Black tea from different geographical origins can be distinguished according to the variety and processing, among which caffeine and alanine were identified as the main differential metabolites of the variety, theaflavin 3, 3′-digallate and succinic acid were identified as the main differential metabolites of the processing. Several machine learning algorithms were used to identify the origin of black tea, and the test set accuracy results showed that the nonlinear model random forest (92.7%) and support vector machine (91.8%) algorithms were better than the linear model linear discriminant analysis (86.3%) and K-nearest neighbor (86.3%). The random forest model screened 14 black tea geographical origin marker metabolites, such as caffeine, malic acid, lysine and β-glucose, and based on these marker metabolites, the chemical fingerprint pattern of origin was drawn. Black tea origin marker metabolites proved that variety contributed more to the origin metabolite fingerprint than processing. The results support that 1H NMR metabolomics combined with machine learning can be used as an effective tool for the construction of black tea chemical fingerprints for quality assessment and fraud detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曲发布了新的文献求助20
1秒前
失眠巧凡发布了新的文献求助10
1秒前
科目三应助谷粱靖采纳,获得10
1秒前
搜集达人应助灰色白面鸮采纳,获得10
3秒前
传奇3应助灰色白面鸮采纳,获得10
3秒前
斯文败类应助灰色白面鸮采纳,获得10
3秒前
3秒前
3秒前
jssssssss发布了新的文献求助10
3秒前
lsy发布了新的文献求助10
6秒前
Hello应助qqq采纳,获得10
7秒前
7秒前
7秒前
王汐完成签到,获得积分10
11秒前
南烟发布了新的文献求助10
11秒前
张文博完成签到,获得积分10
12秒前
棒棒糖完成签到 ,获得积分10
16秒前
自然红牛完成签到,获得积分10
16秒前
鹿c3完成签到 ,获得积分10
17秒前
华仔应助容荣采纳,获得10
18秒前
123456完成签到,获得积分10
18秒前
19秒前
英俊的铭应助郝优佳采纳,获得30
21秒前
一路微笑完成签到,获得积分10
21秒前
23秒前
领导范儿应助鳗鱼绿蝶采纳,获得10
24秒前
30秒前
牛司发布了新的文献求助10
30秒前
烟花应助ybb采纳,获得10
31秒前
科研通AI2S应助Ricardo采纳,获得10
31秒前
Hello应助zzhhcc采纳,获得30
33秒前
鳗鱼绿蝶发布了新的文献求助10
35秒前
科目三应助牛司采纳,获得10
36秒前
PHW完成签到,获得积分10
36秒前
小Z顺利毕业关注了科研通微信公众号
37秒前
37秒前
情怀应助Yuuuuu采纳,获得10
40秒前
鳗鱼绿蝶完成签到,获得积分10
42秒前
轻松的梦竹完成签到,获得积分10
43秒前
田様应助科研通管家采纳,获得10
46秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055373
求助须知:如何正确求助?哪些是违规求助? 2712154
关于积分的说明 7429854
捐赠科研通 2356935
什么是DOI,文献DOI怎么找? 1248350
科研通“疑难数据库(出版商)”最低求助积分说明 606700
版权声明 596093