清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning applications for identify the geographical origin, variety and processing of black tea using 1H NMR chemical fingerprinting

红茶 代谢组学 随机森林 指纹(计算) 线性判别分析 计算机科学 数学 生物 化学 生物技术 传统医学 食品科学 人工智能 色谱法 医学
作者
Chuanjian Cui,Yifan Xu,Ge Jin,Jian-Fa Zong,Chuanyi Peng,Huimei Cai,Ruyan Hou
出处
期刊:Food Control [Elsevier]
卷期号:148: 109686-109686 被引量:40
标识
DOI:10.1016/j.foodcont.2023.109686
摘要

The geographical origin of black tea can affect commercial value and is highly susceptible to food fraud. In this study, nuclear magnetic resonance (NMR) spectroscopy was used for untargeted metabolomics analysis of 219 black tea samples from seven major black tea producing regions in China (Anhui, Yunnan, Fujian, and Guangdong), India (Darjeeling and Assam) and Sri Lanka (Kandy). Black tea from different geographical origins can be distinguished according to the variety and processing, among which caffeine and alanine were identified as the main differential metabolites of the variety, theaflavin 3, 3′-digallate and succinic acid were identified as the main differential metabolites of the processing. Several machine learning algorithms were used to identify the origin of black tea, and the test set accuracy results showed that the nonlinear model random forest (92.7%) and support vector machine (91.8%) algorithms were better than the linear model linear discriminant analysis (86.3%) and K-nearest neighbor (86.3%). The random forest model screened 14 black tea geographical origin marker metabolites, such as caffeine, malic acid, lysine and β-glucose, and based on these marker metabolites, the chemical fingerprint pattern of origin was drawn. Black tea origin marker metabolites proved that variety contributed more to the origin metabolite fingerprint than processing. The results support that 1H NMR metabolomics combined with machine learning can be used as an effective tool for the construction of black tea chemical fingerprints for quality assessment and fraud detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Ava应助Everything采纳,获得10
12秒前
14秒前
小西完成签到 ,获得积分0
16秒前
23秒前
31秒前
31秒前
王美祥发布了新的文献求助10
36秒前
无悔完成签到 ,获得积分10
37秒前
52秒前
1分钟前
1分钟前
BowieHuang应助独特的师采纳,获得10
1分钟前
1分钟前
Everything发布了新的文献求助10
1分钟前
科研通AI2S应助VDC采纳,获得30
1分钟前
1分钟前
Everything完成签到,获得积分10
1分钟前
alex12259完成签到 ,获得积分10
2分钟前
独特的师完成签到,获得积分10
2分钟前
萝卜猪完成签到,获得积分10
2分钟前
daguan完成签到,获得积分10
3分钟前
3分钟前
moxiang发布了新的文献求助10
3分钟前
行走的猫完成签到 ,获得积分10
3分钟前
freebird应助moxiang采纳,获得10
3分钟前
可爱的函函应助moxiang采纳,获得10
3分钟前
潇洒公子完成签到 ,获得积分10
3分钟前
zydaphne完成签到 ,获得积分10
3分钟前
Ava应助Lee采纳,获得10
4分钟前
4分钟前
种下梧桐树完成签到 ,获得积分10
4分钟前
wenbo完成签到,获得积分0
4分钟前
zhangsan完成签到,获得积分10
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
量子星尘发布了新的文献求助10
5分钟前
blueskyzhi完成签到,获得积分10
5分钟前
大个应助科研通管家采纳,获得10
5分钟前
NattyPoe应助科研通管家采纳,获得10
5分钟前
香蕉觅云应助phd采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644947
求助须知:如何正确求助?哪些是违规求助? 4766578
关于积分的说明 15025983
捐赠科研通 4803298
什么是DOI,文献DOI怎么找? 2568206
邀请新用户注册赠送积分活动 1525630
关于科研通互助平台的介绍 1485175