Machine learning applications for identify the geographical origin, variety and processing of black tea using 1H NMR chemical fingerprinting

红茶 代谢组学 随机森林 指纹(计算) 线性判别分析 计算机科学 数学 生物 化学 生物技术 传统医学 食品科学 人工智能 色谱法 医学
作者
Chuanjian Cui,Yifan Xu,Ge Jin,Jian-Fa Zong,Chuanyi Peng,Huimei Cai,Ruyan Hou
出处
期刊:Food Control [Elsevier BV]
卷期号:148: 109686-109686 被引量:22
标识
DOI:10.1016/j.foodcont.2023.109686
摘要

The geographical origin of black tea can affect commercial value and is highly susceptible to food fraud. In this study, nuclear magnetic resonance (NMR) spectroscopy was used for untargeted metabolomics analysis of 219 black tea samples from seven major black tea producing regions in China (Anhui, Yunnan, Fujian, and Guangdong), India (Darjeeling and Assam) and Sri Lanka (Kandy). Black tea from different geographical origins can be distinguished according to the variety and processing, among which caffeine and alanine were identified as the main differential metabolites of the variety, theaflavin 3, 3′-digallate and succinic acid were identified as the main differential metabolites of the processing. Several machine learning algorithms were used to identify the origin of black tea, and the test set accuracy results showed that the nonlinear model random forest (92.7%) and support vector machine (91.8%) algorithms were better than the linear model linear discriminant analysis (86.3%) and K-nearest neighbor (86.3%). The random forest model screened 14 black tea geographical origin marker metabolites, such as caffeine, malic acid, lysine and β-glucose, and based on these marker metabolites, the chemical fingerprint pattern of origin was drawn. Black tea origin marker metabolites proved that variety contributed more to the origin metabolite fingerprint than processing. The results support that 1H NMR metabolomics combined with machine learning can be used as an effective tool for the construction of black tea chemical fingerprints for quality assessment and fraud detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜无霜666完成签到,获得积分10
1秒前
支妙完成签到,获得积分10
1秒前
十八发布了新的文献求助10
2秒前
QWDSA发布了新的文献求助10
4秒前
bioglia完成签到,获得积分10
4秒前
文武发布了新的文献求助30
5秒前
5秒前
bxyyy完成签到 ,获得积分10
5秒前
李健的粉丝团团长应助yyt采纳,获得10
6秒前
7秒前
不展完成签到 ,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
12秒前
领导范儿应助Steven采纳,获得10
12秒前
13秒前
14秒前
huyz完成签到,获得积分10
14秒前
14秒前
15秒前
不会学术的羊完成签到,获得积分10
16秒前
huyz发布了新的文献求助10
18秒前
CC发布了新的文献求助10
19秒前
tutu发布了新的文献求助10
19秒前
19秒前
机智的皮皮虾完成签到 ,获得积分10
21秒前
21秒前
南风吹梦完成签到,获得积分10
22秒前
哈哈发布了新的文献求助10
24秒前
25秒前
风筝完成签到,获得积分10
26秒前
26秒前
乘风的法袍完成签到,获得积分10
27秒前
清爽绣连应助CC采纳,获得10
27秒前
cubicsun发布了新的文献求助10
27秒前
D调的华丽完成签到,获得积分10
28秒前
十八完成签到,获得积分10
29秒前
跳跃的翠柏完成签到,获得积分10
29秒前
慕青应助蔚111采纳,获得10
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150