Failure mechanisms of the bonded interface between mold epoxy and metal substrate exposed to high temperature

环氧树脂 材料科学 复合材料 X射线光电子能谱 纳米压痕 化学工程 冶金 工程类
作者
Shuaijie Zhao,Chuantong Chen,Motoharu Haga,Minoru Ueshima,Hidetoshi Hirahara,Jing Sang,Sung hun Cho,Tohru Sekino,Katsuaki Suganuma
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:254: 110562-110562 被引量:14
标识
DOI:10.1016/j.compositesb.2023.110562
摘要

The fast development of electric vehicles promoted the development of next-generation power modules. Along with this trend, the encapsulation techniques are also transforming from previous gel encapsulation to epoxy encapsulation because epoxy encapsulation reduces the module size significantly. However, the dissimilar bonding between the epoxy and the metal substrate is a weak part of the entire module. Unlike previous studies, which focused on epoxy properties and thermal stress, we investigated the failure mechanisms between the encapsulation epoxy and the copper substrate under high temperatures by considering the interfacial interaction. A high-temperature storage test (HST) was performed at 200 °C until 1000 h for encapsulated packages. We then measured the bonding strength and identified the fracture path at the nanoscale by SEM, XPS, and ToF-SIMS depth profiling. In addition, the changes in the epoxy were characterized by ATR-FTIR, nanoindentation, and XPS depth profiling. The bonding interface was analyzed with AFM-IR, SEM, EDS, and STEM. We found that the fracture happened inside the epoxy rather than the copper/epoxy interface. More importantly, we found that copper atoms diffused into the epoxy reaching approximately 100 nm. The diffused copper atoms and the long-time high-temperature heating promoted the epoxy pyrolysis, forming a 100 nm thick weak layer at the epoxy side, which is the key reason for the high-temperature failure. Our study provided a fresh understanding of the failure mechanisms of the bonding between encapsulation epoxy and the copper substrate under HST, which will contribute significantly to future power module design and material development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whoare完成签到,获得积分10
刚刚
wenyh发布了新的文献求助10
刚刚
刚刚
无花果应助可爱的采纳,获得10
刚刚
刚刚
脑洞疼应助酷酷初之采纳,获得10
1秒前
海风发布了新的文献求助10
1秒前
iufan发布了新的文献求助10
1秒前
看小龙虾打架关注了科研通微信公众号
2秒前
细心健柏完成签到 ,获得积分10
2秒前
3秒前
欢呼芷雪发布了新的文献求助10
3秒前
3秒前
dkdk发布了新的文献求助10
3秒前
4秒前
乌拉嗷发布了新的文献求助10
4秒前
4秒前
5秒前
hl268发布了新的文献求助20
5秒前
小马甲应助韩瑶采纳,获得10
5秒前
wangs完成签到,获得积分10
6秒前
6秒前
Owen应助yu采纳,获得10
6秒前
柔弱芷珊完成签到,获得积分10
6秒前
若清完成签到,获得积分10
6秒前
7秒前
林狗完成签到 ,获得积分10
7秒前
ziying126完成签到,获得积分10
7秒前
Ava应助weiwei采纳,获得10
8秒前
852应助yy采纳,获得10
8秒前
1112发布了新的文献求助10
8秒前
joker发布了新的文献求助30
9秒前
ZIS发布了新的文献求助10
9秒前
迷你的怀莲完成签到,获得积分10
10秒前
KHZhang完成签到,获得积分10
10秒前
非泥完成签到,获得积分10
10秒前
y杨扬完成签到,获得积分10
10秒前
木木完成签到 ,获得积分10
10秒前
11秒前
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825