Positron emission tomography (PET) and fluorescent imaging play a pivotal role in medical diagnosis, biomedical oncologic research, and drug development process, which include identification of target location, target engagement, but also prove on mechanism of action or pharmacokinetics of new drug candidates. PET estimates physiological changes at the molecular level using specific radiotracers containing a short-lived positron emitting radionuclide such as fluorine-18 or carbon-11, whereas fluorescent imaging techniques use fluorescent probes labeled with suitable drug candidates for detection at the molecular level. The human carbonic anhydrase (hCA) isoforms IX and XII are overexpressed in hypoxic cancer cells, promoting tumor growth by regulating extra/intracellular pH, ferroptosis, and metabolism, being recognized as promising targets for anticancer theranostic agents. In this review, we have focused on PET radiotracers as well as fluorescent probes for diagnosis and treatment of tumors expressing hCA IX and hCA XII.