Machine learning approach to predict Hansen solubility parameters of cocrystal coformers via integrating group contribution and COSMO-RS

共晶 COSMO-RS公司 数量结构-活动关系 机器学习 化学 计算机科学 组合化学 人工智能 生物系统 有机化学 分子 生物 氢键 离子液体 催化作用
作者
Chunrong Li,Zongqi Li,Xinyan Liu,Jikun Xu,Chuntao Zhang
出处
期刊:Journal of Molecular Liquids [Elsevier BV]
卷期号:408: 125319-125319 被引量:2
标识
DOI:10.1016/j.molliq.2024.125319
摘要

Hansen Solubility Parameters (HSPs) have been a hot topic on predicting the tendency of pharmaceutical cocrystals formation and cocrystal coformers (CCFs) screening. However, the limitation of such application is the lack of models to accurately predict the values of HSPs for drug CCFs with more structural complexity. Accordingly, three ML (machine learning) models, i.e. ANN (Artificial Neural Network), XGBoostRegressor (Extreme Gradient Boosting Regressor) and LGBMRegressor (Light Gradient Boosting Machine Regressor), were developed for predicting the HSPs on CCFs screening for drugs. The HSPs database for 181 CCFs (containing alcohols, alkenes, aromatics, haloalkanes, amines, ketones, ethers, amides, esters, pharmaceuticals, alkanes, acids, nitroalkanes) were established and classified into the training set (140 compounds) and the test set (41 compounds with various functional polarity and groups, covering solid reagents and solvents). The prediction molecular descriptors were combined from the GC (Group Contribution) methods, the COSMO-RS (the Conductor-like Screening Model for Real Solvents) sigma-moments and energy descriptors. The results showed that ANN and XGBoostRegressor beat out LGBMRegressor in predicting HSPs for CCFs. Finally, SHapley Additive exPlanations (SHAP) was employed to visualize and explain the most important characteristics and effects on predicting HSPs via XGBoostRegressor, indicating that CH3, M2 and MHbdon3 had a significant influence and high contribution to the prediction of δd, δp and δh, respectively. The coupled GC and COSMO-RS strategy had been proven as a promising tool to predict HSPs through XGBoostRegressor for screening, designing, and selecting CCFs for drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精分的猫发布了新的文献求助10
1秒前
聪慧的芳完成签到,获得积分20
1秒前
从容映易完成签到 ,获得积分10
3秒前
3秒前
3秒前
狄骆完成签到,获得积分10
5秒前
7秒前
拿捏陕科大完成签到,获得积分10
8秒前
聪明三娘完成签到,获得积分10
8秒前
9秒前
9秒前
shugefuhe发布了新的文献求助10
9秒前
凯旋预言完成签到 ,获得积分10
10秒前
ily.发布了新的文献求助10
12秒前
哈哈发布了新的文献求助10
12秒前
13秒前
呆瓜完成签到,获得积分10
13秒前
13秒前
科研通AI5应助汉尼拔灬灬采纳,获得10
15秒前
sci一点就通完成签到,获得积分20
16秒前
CipherSage应助明理的依柔采纳,获得10
18秒前
精分的猫完成签到,获得积分10
18秒前
ref:rain发布了新的文献求助10
18秒前
shugefuhe完成签到,获得积分10
18秒前
Phoenix完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
23秒前
23秒前
上官若男应助逃亡的小狗采纳,获得10
24秒前
24秒前
tao发布了新的文献求助10
25秒前
eric发布了新的文献求助10
26秒前
lyn发布了新的文献求助10
26秒前
sxy0604发布了新的文献求助10
28秒前
wwc应助欢呼的简采纳,获得10
29秒前
31秒前
34秒前
Jasper应助sci一点就通采纳,获得20
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670364
求助须知:如何正确求助?哪些是违规求助? 3227602
关于积分的说明 9776258
捐赠科研通 2937754
什么是DOI,文献DOI怎么找? 1609605
邀请新用户注册赠送积分活动 760402
科研通“疑难数据库(出版商)”最低求助积分说明 735836