亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of a Cascaded Deep Learning–based Algorithm for Prostate Lesion Detection at Biparametric MRI

医学 病变 前列腺 放射科 人工智能 算法 病理 内科学 癌症 计算机科学
作者
Yue Lin,Enis C. Yılmaz,Mason J. Belue,Stephanie A. Harmon,Jesse Tetreault,Tim E. Phelps,Katie Merriman,Lindsey Hazen,Charisse Garcia,Dong Yang,Ziyue Xu,Nathan Lay,Antoun Toubaji,Maria J. Merino,Daguang Xu,Yan Mee Law,Sandeep Gurram,Bradford J. Wood,Peter L. Choyke,Peter A. Pinto
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:11
标识
DOI:10.1148/radiol.230750
摘要

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion–guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61–71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0–3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉水完成签到,获得积分10
9秒前
花呗完成签到,获得积分10
12秒前
19秒前
24秒前
37秒前
42秒前
单薄的蓝天完成签到,获得积分10
43秒前
Lucas应助科研通管家采纳,获得10
45秒前
Akim应助科研通管家采纳,获得10
45秒前
无花果应助科研通管家采纳,获得10
45秒前
Tiamo发布了新的文献求助10
46秒前
SCI完成签到 ,获得积分10
1分钟前
乐乐应助科研圈外人采纳,获得10
1分钟前
开心的瘦子完成签到,获得积分10
1分钟前
CipherSage应助cc采纳,获得10
1分钟前
2分钟前
2分钟前
cc完成签到,获得积分10
2分钟前
2分钟前
芒果布丁完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
享受不良诱惑完成签到,获得积分10
2分钟前
丫丫完成签到 ,获得积分10
3分钟前
3分钟前
Tiamo完成签到,获得积分10
3分钟前
yzsh完成签到,获得积分20
3分钟前
3分钟前
3分钟前
3分钟前
FFFF发布了新的文献求助20
3分钟前
4分钟前
Anna完成签到 ,获得积分10
4分钟前
FFFF完成签到,获得积分10
4分钟前
Tiamo发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
有趣的银发布了新的文献求助10
4分钟前
落叶捎来讯息完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232636
求助须知:如何正确求助?哪些是违规求助? 4401913
关于积分的说明 13699440
捐赠科研通 4268297
什么是DOI,文献DOI怎么找? 2342513
邀请新用户注册赠送积分活动 1339514
关于科研通互助平台的介绍 1296180