Evaluation of a Cascaded Deep Learning–based Algorithm for Prostate Lesion Detection at Biparametric MRI

医学 病变 前列腺 放射科 人工智能 算法 病理 内科学 癌症 计算机科学
作者
Yue Lin,Enis C. Yılmaz,Mason J. Belue,Stephanie A. Harmon,Jesse Tetreault,Tim E. Phelps,Katie Merriman,Lindsey Hazen,Charisse Garcia,Dong Yang,Ziyue Xu,Nathan Lay,Antoun Toubaji,Maria J. Merino,Daguang Xu,Yan Mee Law,Sandeep Gurram,Bradford J. Wood,Peter L. Choyke,Peter A. Pinto,Barış Türkbey,Sarah Atzen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:4
标识
DOI:10.1148/radiol.230750
摘要

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion–guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61–71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0–3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
易安完成签到 ,获得积分10
1秒前
1秒前
招财不肥发布了新的文献求助10
1秒前
Hello应助1111采纳,获得10
2秒前
lwei完成签到,获得积分20
2秒前
白蕲发布了新的文献求助10
2秒前
cindy发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
笑笑完成签到,获得积分10
4秒前
5秒前
默默的芙完成签到,获得积分10
5秒前
xm发布了新的文献求助10
5秒前
5秒前
6秒前
陈佳琪完成签到,获得积分10
6秒前
LU完成签到,获得积分10
6秒前
6秒前
6秒前
lwei发布了新的文献求助10
6秒前
设计狂魔应助九川采纳,获得30
6秒前
LiShin发布了新的文献求助10
7秒前
song完成签到,获得积分10
8秒前
Phoebe1996发布了新的文献求助10
8秒前
yannis2020发布了新的文献求助10
8秒前
小猴发布了新的文献求助10
9秒前
酷酷的老太完成签到 ,获得积分20
9秒前
9秒前
锣大炮完成签到,获得积分10
10秒前
maqin完成签到,获得积分10
10秒前
小王完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
科研通AI2S应助lwei采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762