Evaluation of a Cascaded Deep Learning–based Algorithm for Prostate Lesion Detection at Biparametric MRI

医学 病变 前列腺 放射科 人工智能 算法 病理 内科学 癌症 计算机科学
作者
Yue Lin,Enis C. Yılmaz,Mason J. Belue,Stephanie A. Harmon,Jesse Tetreault,Tim E. Phelps,Katie Merriman,Lindsey A. Hazen,Charisse Garcia,Dong Yang,Ziyue Xu,Nathan Lay,Antoun Toubaji,Maria J. Merino,Daguang Xu,Yan Mee Law,Sandeep Gurram,Bradford J. Wood,Peter L. Choyke,Peter A. Pinto,Barış Türkbey,Sarah Atzen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:3
标识
DOI:10.1148/radiol.230750
摘要

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion–guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61–71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0–3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碗碗发布了新的文献求助10
2秒前
4秒前
时有落花至完成签到,获得积分10
4秒前
4秒前
4秒前
可爱的函函应助CQ采纳,获得10
7秒前
7秒前
程院发布了新的文献求助10
8秒前
浅尝离白应助故城采纳,获得10
9秒前
义气完成签到 ,获得积分10
9秒前
jihui发布了新的文献求助10
10秒前
木忻发布了新的文献求助10
10秒前
冷静的豪发布了新的文献求助10
11秒前
11秒前
Chris发布了新的文献求助10
12秒前
12秒前
未来星完成签到,获得积分20
13秒前
14秒前
freya发布了新的文献求助30
17秒前
完美世界应助冷静的豪采纳,获得10
18秒前
魏俏红完成签到,获得积分10
18秒前
Matrix发布了新的文献求助30
18秒前
希望天下0贩的0应助程院采纳,获得10
19秒前
未来星发布了新的文献求助10
20秒前
稳重小虾米完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
天天快乐应助碗碗采纳,获得10
22秒前
英姑应助直率的高烽采纳,获得10
23秒前
23秒前
24秒前
LeoJun完成签到,获得积分10
24秒前
25秒前
25秒前
CQ发布了新的文献求助10
25秒前
gate完成签到,获得积分10
27秒前
wp发布了新的文献求助10
28秒前
初昀杭发布了新的文献求助10
28秒前
陌君子筱发布了新的文献求助10
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226