Evaluation of a Cascaded Deep Learning–based Algorithm for Prostate Lesion Detection at Biparametric MRI

医学 病变 前列腺 放射科 人工智能 算法 病理 内科学 计算机科学 癌症
作者
Yue Lin,Enis C. Yılmaz,Mason J. Belue,Stephanie A. Harmon,Jesse Tetreault,Tim E. Phelps,Katie Merriman,Lindsey Hazen,Charisse Garcia,Dong Yang,Ziyue Xu,Nathan Lay,Antoun Toubaji,Maria J. Merino,Daguang Xu,Yan Mee Law,Sandeep Gurram,Bradford J. Wood,Peter L. Choyke,Peter A. Pinto
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:11
标识
DOI:10.1148/radiol.230750
摘要

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion–guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61–71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0–3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bismarck完成签到,获得积分10
刚刚
basil完成签到,获得积分10
1秒前
nkr完成签到,获得积分10
2秒前
叶子完成签到 ,获得积分10
2秒前
小张完成签到 ,获得积分10
4秒前
10秒前
胖胖完成签到 ,获得积分0
11秒前
量子星尘发布了新的文献求助10
12秒前
烈阳初现发布了新的文献求助10
14秒前
尔信完成签到 ,获得积分10
14秒前
LXZ完成签到,获得积分10
15秒前
黄启烽完成签到,获得积分10
15秒前
瓦罐完成签到 ,获得积分10
18秒前
Perrylin718完成签到,获得积分10
19秒前
笨笨青筠完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
Bioflying完成签到,获得积分10
24秒前
阿达完成签到 ,获得积分10
24秒前
urologywang完成签到 ,获得积分10
25秒前
好好应助科研通管家采纳,获得10
28秒前
好好应助科研通管家采纳,获得10
28秒前
慕青应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
卑微学术人完成签到 ,获得积分10
30秒前
31秒前
111111完成签到,获得积分10
32秒前
烈阳初现完成签到,获得积分10
32秒前
笑林完成签到 ,获得积分10
32秒前
谨慎的凝丝完成签到,获得积分10
34秒前
岩松完成签到 ,获得积分10
36秒前
布吉布完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
36秒前
淡淡醉波wuliao完成签到 ,获得积分10
38秒前
Much完成签到 ,获得积分10
40秒前
吃颗电池完成签到 ,获得积分10
43秒前
王懒懒完成签到 ,获得积分10
44秒前
三伏天发布了新的文献求助10
46秒前
负责的紫安完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
50秒前
量子星尘发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839