已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of a Cascaded Deep Learning–based Algorithm for Prostate Lesion Detection at Biparametric MRI

医学 病变 前列腺 放射科 人工智能 算法 病理 内科学 计算机科学 癌症
作者
Yue Lin,Enis C. Yılmaz,Mason J. Belue,Stephanie A. Harmon,Jesse Tetreault,Tim E. Phelps,Katie Merriman,Lindsey Hazen,Charisse Garcia,Dong Yang,Ziyue Xu,Nathan Lay,Antoun Toubaji,Maria J. Merino,Daguang Xu,Yan Mee Law,Sandeep Gurram,Bradford J. Wood,Peter L. Choyke,Peter A. Pinto
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:11
标识
DOI:10.1148/radiol.230750
摘要

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion–guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61–71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0–3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得200
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得30
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
刚刚
个性湘发布了新的文献求助10
刚刚
树树发布了新的文献求助10
1秒前
2秒前
ting完成签到,获得积分10
4秒前
繁荣的寻芹完成签到 ,获得积分10
4秒前
俭朴的雨安完成签到 ,获得积分10
5秒前
常淼淼发布了新的文献求助10
6秒前
敷衍完成签到,获得积分10
6秒前
友好谷蓝完成签到,获得积分10
9秒前
树树完成签到,获得积分10
10秒前
木子完成签到 ,获得积分10
11秒前
多年以后完成签到 ,获得积分10
12秒前
老八完成签到,获得积分10
13秒前
吃西瓜皮完成签到,获得积分10
14秒前
15秒前
情怀应助明明采纳,获得10
16秒前
个性湘完成签到,获得积分10
16秒前
我是老大应助Aimee采纳,获得10
16秒前
orixero应助唠叨的宝马采纳,获得10
18秒前
zzz完成签到 ,获得积分10
21秒前
lx840518给lx840518的求助进行了留言
21秒前
22秒前
26秒前
英俊的铭应助哦哦哦采纳,获得10
26秒前
27秒前
jjdeng发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958