永久冻土
碳循环
新陈代谢
微生物代谢
碳纤维
化学
古细菌
多酚
环境化学
生物化学
生物
细菌
生态学
基因
生态系统
材料科学
遗传学
复合数
复合材料
抗氧化剂
作者
Bridget McGivern,Dylan Cronin,Jared B. Ellenbogen,Mikayla Borton,Eleanor Knutson,Viviana Freire-Zapata,John A. Bouranis,Lukas Bernhardt,Alma Angelica Hernández,Rory M. Flynn,Reed Woyda,Alexandra B. Cory,Rachel M. Wilson,Jeffrey P. Chanton,Ben J. Woodcroft,Jessica G. Ernakovich,Malak Tfaily,Matthew B. Sullivan,Gene W. Tyson,Virginia I. Rich,Ann Hagerman,Kelly Wrighton
出处
期刊:Nature microbiology
日期:2024-05-28
卷期号:9 (6): 1454-1466
被引量:1
标识
DOI:10.1038/s41564-024-01691-0
摘要
Abstract With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along a permafrost thaw-induced saturation gradient in Stordalen Mire, a model Arctic peatland, we confirmed a negative relationship between phenol oxidase expression and saturation but failed to support other trends predicted by the enzyme latch. To inventory alternative polyphenol removal strategies, we built CAMPER, a gene annotation tool leveraging polyphenol enzyme knowledge gleaned across microbial ecosystems. Applying CAMPER to genome-resolved metatranscriptomes, we identified genes for diverse polyphenol-active enzymes expressed by various microbial lineages under a range of redox conditions. This shifts the paradigm that polyphenols stabilize carbon in saturated soils and highlights the need to consider both oxic and anoxic polyphenol metabolisms to understand carbon cycling in changing ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI