HEMAsNet: A Hemisphere Asymmetry Network Inspired by the Brain for Depression Recognition From Electroencephalogram Signals

可解释性 胼胝体 人工智能 计算机科学 卷积神经网络 脑电图 人口 模式识别(心理学) 神经科学 心理学 机器学习 医学 环境卫生
作者
Jian Shen,Kunlin Li,Huajian Liang,Zeguang Zhao,Yu Ma,Jinwen Wu,Jieshuo Zhang,Yanan Zhang,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5247-5259 被引量:17
标识
DOI:10.1109/jbhi.2024.3404664
摘要

Depression is a prevalent mental disorder that affects a significant portion of the global population. Despite recent advancements in EEG-based depression recognition models rooted in machine learning and deep learning approaches, many lack comprehensive consideration of depression's pathogenesis, leading to limited neuroscientific interpretability. To address these issues, we propose a hemisphere asymmetry network (HEMAsNet) inspired by the brain for depression recognition from EEG signals. HEMAsNet employs a combination of multi-scale Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) blocks to extract temporal features from both hemispheres of the brain. Moreover, the model introduces a unique 'Callosum-like' block, inspired by the corpus callosum's pivotal role in facilitating inter-hemispheric information transfer within the brain. This block enhances information exchange between hemispheres, potentially improving depression recognition accuracy. To validate the performance of HEMAsNet, we first confirmed the asymmetric features of frontal lobe EEG in the MODMA dataset. Subsequently, our method achieved a depression recognition accuracy of 0.8067, indicating its effectiveness in increasing classification performance. Furthermore, we conducted a comprehensive investigation from spatial and frequency perspectives, demonstrating HEMAsNet's innovation in explaining model decisions. The advantages of HEMAsNet lie in its ability to achieve more accurate and interpretable recognition of depression through the simulation of physiological processes, integration of spatial information, and incorporation of the Callosum-like block.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jiayou Zhang完成签到,获得积分10
刚刚
肉肉完成签到 ,获得积分10
刚刚
鹿儿飞发布了新的文献求助10
刚刚
刚刚
小波完成签到 ,获得积分10
刚刚
Patty完成签到,获得积分10
刚刚
首席或雪月完成签到,获得积分10
刚刚
橘寄完成签到,获得积分10
刚刚
Luckqi6688完成签到,获得积分10
刚刚
你好纠结伦完成签到,获得积分10
刚刚
解语花发布了新的文献求助30
刚刚
1秒前
wu5757完成签到,获得积分20
1秒前
1秒前
Mandarine发布了新的文献求助30
1秒前
无花果应助theverve采纳,获得30
2秒前
2秒前
Chichi完成签到,获得积分10
2秒前
2秒前
称心寒松发布了新的文献求助10
3秒前
3秒前
3秒前
crytek发布了新的文献求助10
3秒前
你们才来完成签到,获得积分10
3秒前
jorgan完成签到,获得积分10
3秒前
英姑应助解语花采纳,获得10
3秒前
4秒前
夕荀发布了新的文献求助10
4秒前
埃尔拉发布了新的文献求助10
4秒前
乐安完成签到,获得积分10
4秒前
5秒前
Chichi发布了新的文献求助10
5秒前
HowesFeng发布了新的文献求助10
5秒前
6秒前
苏silence发布了新的文献求助10
6秒前
易楠发布了新的文献求助10
6秒前
ning完成签到,获得积分10
6秒前
六百六十六完成签到,获得积分10
6秒前
发发发发布了新的文献求助30
6秒前
852应助crytek采纳,获得50
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006