HEMAsNet: A Hemisphere Asymmetry Network Inspired by the Brain for Depression Recognition From Electroencephalogram Signals

可解释性 胼胝体 人工智能 计算机科学 卷积神经网络 脑电图 人口 模式识别(心理学) 神经科学 心理学 机器学习 医学 环境卫生
作者
Jian Shen,Kunlin Li,Huajian Liang,Zeguang Zhao,Yu Ma,Jinwen Wu,Jieshuo Zhang,Yanan Zhang,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5247-5259 被引量:9
标识
DOI:10.1109/jbhi.2024.3404664
摘要

Depression is a prevalent mental disorder that affects a significant portion of the global population. Despite recent advancements in EEG-based depression recognition models rooted in machine learning and deep learning approaches, many lack comprehensive consideration of depression's pathogenesis, leading to limited neuroscientific interpretability. To address these issues, we propose a hemisphere asymmetry network (HEMAsNet) inspired by the brain for depression recognition from EEG signals. HEMAsNet employs a combination of multi-scale Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) blocks to extract temporal features from both hemispheres of the brain. Moreover, the model introduces a unique 'Callosum- like' block, inspired by the corpus callosum's pivotal role in facilitating inter-hemispheric information transfer within the brain. This block enhances information exchange between hemispheres, potentially improving depression recognition accuracy. To validate the performance of HEMAsNet, we first confirmed the asymmetric features of frontal lobe EEG in the MODMA dataset. Subsequently, our method achieved a depression recognition accuracy of 0.8067, indicating its effectiveness in increasing classification performance. Furthermore, we conducted a comprehensive investigation from spatial and frequency perspectives, demonstrating HEMAsNet's innovation in explaining model decisions. The advantages of HEMAsNet lie in its ability to achieve more accurate and interpretable recognition of depression through the simulation of physiological processes, integration of spatial information, and incorporation of the Callosum- like block.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酸甜完成签到 ,获得积分10
1秒前
小宁发布了新的文献求助10
1秒前
猫猫无敌发布了新的文献求助10
2秒前
明亮梨愁完成签到,获得积分10
2秒前
cj完成签到,获得积分10
2秒前
Akane完成签到,获得积分10
3秒前
小饼一定要上岸完成签到 ,获得积分10
3秒前
虹虹完成签到 ,获得积分10
4秒前
5秒前
5秒前
叶子发布了新的文献求助10
6秒前
6秒前
6秒前
lJH完成签到,获得积分10
8秒前
8秒前
脑洞疼应助Sean采纳,获得10
8秒前
LJY发布了新的文献求助10
10秒前
10秒前
10秒前
probiotics完成签到,获得积分10
10秒前
frigst发布了新的文献求助10
11秒前
啦啦发布了新的文献求助10
11秒前
小宁完成签到,获得积分10
12秒前
knight发布了新的文献求助10
12秒前
潮汐完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
LLN发布了新的文献求助10
14秒前
14秒前
羊白玉发布了新的文献求助10
14秒前
17秒前
清宴发布了新的文献求助10
17秒前
浮游应助七yy采纳,获得10
18秒前
18秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得30
21秒前
科研通AI5应助灵巧的尔芙采纳,获得10
21秒前
tion66完成签到 ,获得积分10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143226
求助须知:如何正确求助?哪些是违规求助? 4341244
关于积分的说明 13519986
捐赠科研通 4181483
什么是DOI,文献DOI怎么找? 2293009
邀请新用户注册赠送积分活动 1293582
关于科研通互助平台的介绍 1236234