HEMAsNet: A Hemisphere Asymmetry Network Inspired by the Brain for Depression Recognition From Electroencephalogram Signals

可解释性 胼胝体 人工智能 计算机科学 卷积神经网络 脑电图 人口 模式识别(心理学) 神经科学 心理学 机器学习 医学 环境卫生
作者
Jian Shen,Kunlin Li,Huajian Liang,Zeguang Zhao,Yu Ma,Jinwen Wu,Jieshuo Zhang,Yanan Zhang,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5247-5259 被引量:6
标识
DOI:10.1109/jbhi.2024.3404664
摘要

Depression is a prevalent mental disorder that affects a significant portion of the global population. Despite recent advancements in EEG-based depression recognition models rooted in machine learning and deep learning approaches, many lack comprehensive consideration of depression's pathogenesis, leading to limited neuroscientific interpretability. To address these issues, we propose a hemisphere asymmetry network (HEMAsNet) inspired by the brain for depression recognition from EEG signals. HEMAsNet employs a combination of multi-scale Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) blocks to extract temporal features from both hemispheres of the brain. Moreover, the model introduces a unique 'Callosum- like' block, inspired by the corpus callosum's pivotal role in facilitating inter-hemispheric information transfer within the brain. This block enhances information exchange between hemispheres, potentially improving depression recognition accuracy. To validate the performance of HEMAsNet, we first confirmed the asymmetric features of frontal lobe EEG in the MODMA dataset. Subsequently, our method achieved a depression recognition accuracy of 0.8067, indicating its effectiveness in increasing classification performance. Furthermore, we conducted a comprehensive investigation from spatial and frequency perspectives, demonstrating HEMAsNet's innovation in explaining model decisions. The advantages of HEMAsNet lie in its ability to achieve more accurate and interpretable recognition of depression through the simulation of physiological processes, integration of spatial information, and incorporation of the Callosum- like block.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深呼吸发布了新的文献求助10
1秒前
拼搏的梦槐完成签到,获得积分10
1秒前
snnnn完成签到,获得积分20
2秒前
2秒前
汝桢发布了新的文献求助10
2秒前
SciGPT应助PAN采纳,获得10
2秒前
2秒前
2秒前
pqq完成签到,获得积分10
2秒前
guanxun完成签到,获得积分10
3秒前
烟火年年锦完成签到,获得积分20
3秒前
3秒前
lumickey发布了新的文献求助10
3秒前
3秒前
3秒前
爱学习的猫完成签到,获得积分10
3秒前
大个应助冷茗采纳,获得10
4秒前
调皮初蓝完成签到,获得积分10
4秒前
打打应助gwh采纳,获得10
4秒前
科研通AI5应助zmm采纳,获得10
4秒前
超级绫完成签到,获得积分10
5秒前
FangyingTang完成签到 ,获得积分10
5秒前
5秒前
5秒前
文章快快来完成签到,获得积分10
6秒前
Sherwin完成签到,获得积分10
6秒前
李健应助尊敬吐司采纳,获得10
6秒前
snnnn发布了新的文献求助10
6秒前
大模型应助Itsccy采纳,获得10
6秒前
6秒前
付大威完成签到,获得积分10
7秒前
许子健发布了新的文献求助10
7秒前
lx发布了新的文献求助10
7秒前
科研小白完成签到,获得积分10
7秒前
想毕业发布了新的文献求助20
7秒前
八格牙路发布了新的文献求助10
7秒前
lan完成签到,获得积分10
8秒前
牧之关注了科研通微信公众号
8秒前
汝桢完成签到,获得积分10
9秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646