HEMAsNet: A Hemisphere Asymmetry Network Inspired by the Brain for Depression Recognition From Electroencephalogram Signals

可解释性 胼胝体 人工智能 计算机科学 卷积神经网络 脑电图 人口 模式识别(心理学) 神经科学 心理学 机器学习 医学 环境卫生
作者
Jian Shen,Kunlin Li,Huajian Liang,Zeguang Zhao,Yu Ma,Jinwen Wu,Jieshuo Zhang,Yanan Zhang,Bin Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5247-5259 被引量:3
标识
DOI:10.1109/jbhi.2024.3404664
摘要

Depression is a prevalent mental disorder that affects a significant portion of the global population. Despite recent advancements in EEG-based depression recognition models rooted in machine learning and deep learning approaches, many lack comprehensive consideration of depression's pathogenesis, leading to limited neuroscientific interpretability. To address these issues, we propose a hemisphere asymmetry network (HEMAsNet) inspired by the brain for depression recognition from EEG signals. HEMAsNet employs a combination of multi-scale Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) blocks to extract temporal features from both hemispheres of the brain. Moreover, the model introduces a unique 'Callosum- like' block, inspired by the corpus callosum's pivotal role in facilitating inter-hemispheric information transfer within the brain. This block enhances information exchange between hemispheres, potentially improving depression recognition accuracy. To validate the performance of HEMAsNet, we first confirmed the asymmetric features of frontal lobe EEG in the MODMA dataset. Subsequently, our method achieved a depression recognition accuracy of 0.8067, indicating its effectiveness in increasing classification performance. Furthermore, we conducted a comprehensive investigation from spatial and frequency perspectives, demonstrating HEMAsNet's innovation in explaining model decisions. The advantages of HEMAsNet lie in its ability to achieve more accurate and interpretable recognition of depression through the simulation of physiological processes, integration of spatial information, and incorporation of the Callosum- like block.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
1秒前
桐桐应助Sophist采纳,获得10
2秒前
2秒前
Dasiliy完成签到,获得积分20
3秒前
水加冰糖发布了新的文献求助10
4秒前
4秒前
Liufgui应助娜娜家的大宝贝采纳,获得10
5秒前
顾矜应助Steven采纳,获得10
8秒前
我爱科研发布了新的文献求助10
8秒前
GWZZ发布了新的文献求助30
9秒前
LEEEEYAN发布了新的文献求助10
9秒前
从前慢发布了新的文献求助10
9秒前
Sophist完成签到,获得积分10
11秒前
athruncx完成签到,获得积分10
13秒前
14秒前
果子完成签到 ,获得积分10
16秒前
Jasper应助我爱科研采纳,获得10
17秒前
19秒前
别摆烂了发布了新的文献求助10
19秒前
19秒前
yx_cheng应助KDS采纳,获得10
20秒前
Liufgui应助Steven采纳,获得10
21秒前
23秒前
Dasiliy发布了新的文献求助10
24秒前
24秒前
英姑应助小贩采纳,获得10
27秒前
28秒前
陶醉完成签到,获得积分10
29秒前
别摆烂了发布了新的文献求助10
31秒前
oh应助ext采纳,获得10
31秒前
32秒前
湖蓝色发布了新的文献求助10
34秒前
Owen应助Steven采纳,获得10
35秒前
zho发布了新的文献求助10
37秒前
37秒前
fanglin123发布了新的文献求助10
37秒前
英姑应助睡教教主采纳,获得10
39秒前
zhanglin完成签到,获得积分10
40秒前
wuyisha完成签到,获得积分10
41秒前
Lesile发布了新的文献求助10
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075