亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abnormal Behavior Recognition Based on 3D Dense Connections

计算机科学 模式识别(心理学) 人工智能
作者
Wei Chen,Zhanhe Yu,Chaochao Yang,Yuanyao Lu
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:34 (09)
标识
DOI:10.1142/s0129065724500497
摘要

Abnormal behavior recognition is an important technology used to detect and identify activities or events that deviate from normal behavior patterns. It has wide applications in various fields such as network security, financial fraud detection, and video surveillance. In recent years, Deep Convolution Networks (ConvNets) have been widely applied in abnormal behavior recognition algorithms and have achieved significant results. However, existing abnormal behavior detection algorithms mainly focus on improving the accuracy of the algorithms and have not explored the real-time nature of abnormal behavior recognition. This is crucial to quickly identify abnormal behavior in public places and improve urban public safety. Therefore, this paper proposes an abnormal behavior recognition algorithm based on three-dimensional (3D) dense connections. The proposed algorithm uses a multi-instance learning strategy to classify various types of abnormal behaviors, and employs dense connection modules and soft-threshold attention mechanisms to reduce the model’s parameter count and enhance network computational efficiency. Finally, redundant information in the sequence is reduced by attention allocation to mitigate its negative impact on recognition results. Experimental verification shows that our method achieves a recognition accuracy of 95.61% on the UCF-crime dataset. Comparative experiments demonstrate that our model has strong performance in terms of recognition accuracy and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiao涂完成签到,获得积分10
17秒前
26秒前
闫雪发布了新的文献求助10
32秒前
打打应助闫雪采纳,获得10
43秒前
吗喽完成签到,获得积分10
47秒前
某某某完成签到,获得积分10
51秒前
1分钟前
爱吃橙子完成签到 ,获得积分10
1分钟前
丰富莹芝发布了新的文献求助10
1分钟前
思源应助丰富莹芝采纳,获得10
1分钟前
Akitten发布了新的文献求助10
1分钟前
qqq完成签到,获得积分10
1分钟前
1分钟前
小博发布了新的文献求助10
2分钟前
童大大完成签到,获得积分20
2分钟前
小博完成签到,获得积分10
2分钟前
CodeCraft应助糯糯采纳,获得10
3分钟前
汉堡包应助Plum22采纳,获得10
3分钟前
岁岁完成签到 ,获得积分10
4分钟前
4分钟前
Plum22发布了新的文献求助10
4分钟前
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
cherlie应助Plum22采纳,获得20
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
丰富莹芝发布了新的文献求助10
6分钟前
6分钟前
糯糯发布了新的文献求助10
6分钟前
所所应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
喜悦幻灵完成签到 ,获得积分10
6分钟前
6分钟前
热心易绿完成签到 ,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990148
求助须知:如何正确求助?哪些是违规求助? 3532119
关于积分的说明 11256456
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882288
科研通“疑难数据库(出版商)”最低求助积分说明 809228