A Cross-domain Object-semantic Matching Framework for Imbalanced High Spatial Resolution Imagery Water-body Extraction

计算机科学 人工智能 萃取(化学) 匹配(统计) 计算机视觉 图像分辨率 对象(语法) 遥感 水体 模式识别(心理学) 特征提取 图像匹配 领域(数学分析) 地质学 图像(数学) 数学 统计 数学分析 化学 岩土工程 色谱法
作者
Zhen Li,Qiqi Zhu,Jiahui Yang,Jianjun Lv,Qingfeng Guan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15
标识
DOI:10.1109/tgrs.2024.3407200
摘要

Large-scale information pertaining to surface water bodies is crucial for activities such as flood monitoring. Deep learning algorithms have shown great potential in water-body extraction based on high spatial resolution (HSR) imagery. However, the current reliance on deep learning for HSR imagery water-body extraction necessitates a substantial quantity of manually labeled training samples. The variance in spatial resolution among images and the intricacies of scenes consistently pose challenges to the transferability of deep learning. Moreover, the number of pixels representing water bodies is typically lower compared to the number of background pixels. This imbalance in class prediction probabilities often limits the accuracy of water-body class predictions. In this paper, we propose a cross-domain object-semantic matching (COM) framework for extracting water bodies from unlabeled high-resolution remote sensing imagery. The distinctions in spectra, shapes, and semantic distributions of water bodies across various domains create challenges for certain source domain samples to contribute positively to model training. Therefore, a sample semantic similarity matching mechanism is devised. The proposed object contextual perception network (OCPNet) models multi-scale water body features and object-contextual representations, aiming to achieve a more accurate and comprehensive representation of surface water bodies. Additionally, to prevent the training process from being dominated by easily transferred categories in the target domain, a weighted joint loss is designed to alleviate the imbalance of predicted probabilities and pixel numbers between water and non-water bodies. Experiments on four public datasets of GID, CCF, LoveDA and DeepGlobe demonstrate the effectiveness and generalization of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苗槐完成签到,获得积分10
刚刚
阳光的沉鱼完成签到,获得积分10
刚刚
大模型应助白华苍松采纳,获得10
1秒前
zyp应助火焰向上采纳,获得10
1秒前
1秒前
123456完成签到,获得积分10
1秒前
深情安青应助半颗橙子采纳,获得10
1秒前
CodeCraft应助123采纳,获得10
2秒前
隐形曼青应助心花怒放采纳,获得10
2秒前
酷酷的如天完成签到,获得积分10
2秒前
2秒前
常常完成签到,获得积分10
2秒前
2秒前
HH完成签到,获得积分10
2秒前
3秒前
3秒前
SandyH完成签到,获得积分10
3秒前
Jack完成签到,获得积分10
3秒前
白露完成签到 ,获得积分10
3秒前
Owen应助默默柚子采纳,获得10
4秒前
4秒前
隐形的易巧完成签到 ,获得积分10
4秒前
5秒前
Ava应助Autoimmune采纳,获得10
5秒前
科研通AI5应助多变的卡宾采纳,获得10
5秒前
Citrus发布了新的文献求助10
6秒前
科目三应助莉莉采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
惠惠发布了新的文献求助10
7秒前
深夜看文献的小刘完成签到,获得积分10
7秒前
菊菊发布了新的文献求助10
7秒前
7秒前
猪猪发布了新的文献求助10
8秒前
胖豆发布了新的文献求助10
8秒前
巴啦啦能量完成签到 ,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762