A Cross-Domain Object-Semantic Matching Framework for Imbalanced High Spatial Resolution Imagery Water-Body Extraction

计算机科学 人工智能 萃取(化学) 匹配(统计) 计算机视觉 图像分辨率 对象(语法) 遥感 水体 模式识别(心理学) 特征提取 图像匹配 领域(数学分析) 地质学 图像(数学) 数学 统计 数学分析 化学 岩土工程 色谱法
作者
Zhen Li,Qiqi Zhu,Jiahui Yang,Jianjun Lv,Qingfeng Guan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2024.3407200
摘要

Large-scale information pertaining to surface water bodies is crucial for activities such as flood monitoring. Deep learning algorithms have shown great potential in water-body extraction based on high spatial resolution (HSR) imagery. However, the current reliance on deep learning for HSR imagery water-body extraction necessitates a substantial quantity of manually labeled training samples. The variance in spatial resolution among images and the intricacies of scenes consistently pose challenges to the transferability of deep learning. Moreover, the number of pixels representing water bodies is typically lower compared to the number of background pixels. This imbalance in class prediction probabilities often limits the accuracy of water-body class predictions. In this paper, we propose a cross-domain object-semantic matching (COM) framework for extracting water bodies from unlabeled high-resolution remote sensing imagery. The distinctions in spectra, shapes, and semantic distributions of water bodies across various domains create challenges for certain source domain samples to contribute positively to model training. Therefore, a sample semantic similarity matching mechanism is devised. The proposed object contextual perception network (OCPNet) models multi-scale water body features and object-contextual representations, aiming to achieve a more accurate and comprehensive representation of surface water bodies. Additionally, to prevent the training process from being dominated by easily transferred categories in the target domain, a weighted joint loss is designed to alleviate the imbalance of predicted probabilities and pixel numbers between water and non-water bodies. Experiments on four public datasets of GID, CCF, LoveDA and DeepGlobe demonstrate the effectiveness and generalization of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
00完成签到,获得积分10
刚刚
1秒前
怡然乌发布了新的文献求助10
4秒前
摸俞发布了新的文献求助10
4秒前
lamer完成签到,获得积分10
4秒前
pfuhh发布了新的文献求助10
5秒前
QQ完成签到,获得积分10
5秒前
yshu完成签到,获得积分10
6秒前
7秒前
大个应助朝朝采纳,获得10
7秒前
7秒前
韩菲菲关注了科研通微信公众号
8秒前
Rachel发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
Lucas应助风趣的凝雁采纳,获得10
12秒前
zhuyao完成签到 ,获得积分10
12秒前
q792309106发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
航某人完成签到,获得积分10
15秒前
16秒前
17秒前
18秒前
18秒前
科研通AI5应助wangruiyang采纳,获得10
18秒前
云辞忧发布了新的文献求助10
19秒前
斯文败类应助纷纭采纳,获得10
20秒前
霍凡白完成签到,获得积分10
21秒前
21秒前
朝朝发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
Jin_Xin发布了新的文献求助20
24秒前
英俊绝义发布了新的文献求助30
26秒前
27秒前
脑洞疼应助风趣的凝雁采纳,获得10
28秒前
在水一方应助滴滴答采纳,获得10
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144