A Cross-domain Object-semantic Matching Framework for Imbalanced High Spatial Resolution Imagery Water-body Extraction

计算机科学 人工智能 萃取(化学) 匹配(统计) 计算机视觉 图像分辨率 对象(语法) 遥感 水体 模式识别(心理学) 特征提取 图像匹配 领域(数学分析) 地质学 图像(数学) 数学 统计 数学分析 化学 岩土工程 色谱法
作者
Zhen Li,Qiqi Zhu,Jiahui Yang,Jianjun Lv,Qingfeng Guan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15
标识
DOI:10.1109/tgrs.2024.3407200
摘要

Large-scale information pertaining to surface water bodies is crucial for activities such as flood monitoring. Deep learning algorithms have shown great potential in water-body extraction based on high spatial resolution (HSR) imagery. However, the current reliance on deep learning for HSR imagery water-body extraction necessitates a substantial quantity of manually labeled training samples. The variance in spatial resolution among images and the intricacies of scenes consistently pose challenges to the transferability of deep learning. Moreover, the number of pixels representing water bodies is typically lower compared to the number of background pixels. This imbalance in class prediction probabilities often limits the accuracy of water-body class predictions. In this paper, we propose a cross-domain object-semantic matching (COM) framework for extracting water bodies from unlabeled high-resolution remote sensing imagery. The distinctions in spectra, shapes, and semantic distributions of water bodies across various domains create challenges for certain source domain samples to contribute positively to model training. Therefore, a sample semantic similarity matching mechanism is devised. The proposed object contextual perception network (OCPNet) models multi-scale water body features and object-contextual representations, aiming to achieve a more accurate and comprehensive representation of surface water bodies. Additionally, to prevent the training process from being dominated by easily transferred categories in the target domain, a weighted joint loss is designed to alleviate the imbalance of predicted probabilities and pixel numbers between water and non-water bodies. Experiments on four public datasets of GID, CCF, LoveDA and DeepGlobe demonstrate the effectiveness and generalization of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vergil发布了新的文献求助10
1秒前
shen发布了新的文献求助20
1秒前
堪怀完成签到,获得积分10
1秒前
3秒前
毛豆应助冰红茶采纳,获得10
3秒前
求助大佬们完成签到 ,获得积分10
3秒前
chen完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助GangWu采纳,获得10
5秒前
轻松的书南完成签到,获得积分10
6秒前
风中的爆米花完成签到,获得积分20
6秒前
19发布了新的文献求助10
6秒前
哈哈哈完成签到,获得积分10
7秒前
小天才123发布了新的文献求助30
7秒前
龙虾发票完成签到,获得积分10
7秒前
7秒前
南风完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
GREW发布了新的文献求助10
8秒前
热情岩发布了新的文献求助10
9秒前
zz发布了新的文献求助10
9秒前
充电宝应助chen采纳,获得10
9秒前
9秒前
10秒前
贾小闲完成签到,获得积分10
10秒前
10秒前
上官若男应助呜呼啦呼采纳,获得10
10秒前
生动的战斗机完成签到,获得积分10
11秒前
11秒前
小迪发布了新的文献求助10
11秒前
易安应助lixl0725采纳,获得10
11秒前
12秒前
上卿发布了新的文献求助10
12秒前
八九发布了新的文献求助10
13秒前
陌生人发布了新的文献求助10
13秒前
JERLY发布了新的文献求助10
13秒前
13秒前
bingsu108发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305566
求助须知:如何正确求助?哪些是违规求助? 2939312
关于积分的说明 8492936
捐赠科研通 2613754
什么是DOI,文献DOI怎么找? 1427569
科研通“疑难数据库(出版商)”最低求助积分说明 663115
邀请新用户注册赠送积分活动 647883