Multimodal Co-attention Fusion Network with Online Data Augmentation for Cancer Subtype Classification

计算机科学 人工智能 传感器融合 融合 模式识别(心理学) 哲学 语言学
作者
Saisai Ding,Juncheng Li,Jun Wang,Shihui Ying,Jun Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3405535
摘要

It is an essential task to accurately diagnose cancer subtypes in computational pathology for personalized cancer treatment. Recent studies have indicated that the combination of multimodal data, such as whole slide images (WSIs) and multi-omics data, could achieve more accurate diagnosis. However, robust cancer diagnosis remains challenging due to the heterogeneity among multimodal data, as well as the performance degradation caused by insufficient multimodal patient data. In this work, we propose a novel multimodal co-attention fusion network (MCFN) with online data augmentation (ODA) for cancer subtype classification. Specifically, a multimodal mutual-guided co-attention (MMC) module is proposed to effectively perform dense multimodal interactions. It enables multimodal data to mutually guide and calibrate each other during the integration process to alleviate inter- and intra-modal heterogeneities. Subsequently, a self-normalizing network (SNN)-Mixer is developed to allow information communication among different omics data and alleviate the high-dimensional small-sample size problem in multi-omics data. Most importantly, to compensate for insufficient multimodal samples for model training, we propose an ODA module in MCFN. The ODA module leverages the multimodal knowledge to guide the data augmentations of WSIs and maximize the data diversity during model training. Extensive experiments are conducted on the public TCGA dataset. The experimental results demonstrate that the proposed MCFN outperforms all the compared algorithms, suggesting its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈剑愁发布了新的文献求助10
1秒前
屋顶橙子味完成签到 ,获得积分10
1秒前
forest发布了新的文献求助10
1秒前
NexusExplorer应助稳重中心采纳,获得10
3秒前
7秒前
Sunny完成签到,获得积分10
7秒前
高兴的羊完成签到,获得积分10
9秒前
serein发布了新的文献求助30
9秒前
10秒前
万能图书馆应助漂亮幻莲采纳,获得10
11秒前
12秒前
谢紫玲发布了新的文献求助10
12秒前
13秒前
华仔应助小大巫采纳,获得30
15秒前
sad完成签到,获得积分10
15秒前
充电宝应助ziwei采纳,获得10
15秒前
华仔应助甜甜寄凡采纳,获得10
15秒前
求助发布了新的文献求助10
15秒前
调研昵称发布了新的文献求助10
18秒前
18秒前
asd发布了新的文献求助10
19秒前
20秒前
20秒前
豆子完成签到,获得积分10
21秒前
漂亮幻莲完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
23xyke发布了新的文献求助10
24秒前
漂亮幻莲发布了新的文献求助10
24秒前
谢紫玲完成签到,获得积分10
25秒前
25秒前
咕咕完成签到,获得积分10
27秒前
毛儿豆儿完成签到,获得积分10
29秒前
张远幸发布了新的文献求助10
29秒前
甜甜寄凡发布了新的文献求助10
30秒前
30秒前
ziwei完成签到,获得积分10
30秒前
gaoww完成签到,获得积分20
30秒前
科目三应助饱满的山柳采纳,获得30
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135044
求助须知:如何正确求助?哪些是违规求助? 2786005
关于积分的说明 7774726
捐赠科研通 2441825
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825