Multimodal Co-attention Fusion Network with Online Data Augmentation for Cancer Subtype Classification

计算机科学 人工智能 传感器融合 融合 模式识别(心理学) 哲学 语言学
作者
Saisai Ding,Juncheng Li,Jun Wang,Shihui Ying,Jun Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (11): 3977-3989 被引量:1
标识
DOI:10.1109/tmi.2024.3405535
摘要

It is an essential task to accurately diagnose cancer subtypes in computational pathology for personalized cancer treatment. Recent studies have indicated that the combination of multimodal data, such as whole slide images (WSIs) and multi-omics data, could achieve more accurate diagnosis. However, robust cancer diagnosis remains challenging due to the heterogeneity among multimodal data, as well as the performance degradation caused by insufficient multimodal patient data. In this work, we propose a novel multimodal co-attention fusion network (MCFN) with online data augmentation (ODA) for cancer subtype classification. Specifically, a multimodal mutual-guided co-attention (MMC) module is proposed to effectively perform dense multimodal interactions. It enables multimodal data to mutually guide and calibrate each other during the integration process to alleviate inter- and intra-modal heterogeneities. Subsequently, a self-normalizing network (SNN)-Mixer is developed to allow information communication among different omics data and alleviate the high-dimensional small-sample size problem in multi-omics data. Most importantly, to compensate for insufficient multimodal samples for model training, we propose an ODA module in MCFN. The ODA module leverages the multimodal knowledge to guide the data augmentations of WSIs and maximize the data diversity during model training. Extensive experiments are conducted on the public TCGA dataset. The experimental results demonstrate that the proposed MCFN outperforms all the compared algorithms, suggesting its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
wjj发布了新的文献求助10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
彭于晏应助鱼与树采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
Orange应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
xiuxiu_27发布了新的文献求助10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
猪猪hero发布了新的文献求助10
1秒前
1秒前
思源应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得30
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
剑兰先生应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
Gaoge发布了新的文献求助10
3秒前
kimoto完成签到 ,获得积分10
4秒前
Tsuki完成签到,获得积分10
4秒前
4秒前
孙瞳完成签到,获得积分10
4秒前
小池同学完成签到,获得积分10
5秒前
JamesPei应助大白采纳,获得10
5秒前
mi发布了新的文献求助10
6秒前
小夭完成签到,获得积分10
6秒前
畅快自行车完成签到 ,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678